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Abstract

Firms routinely conduct randomized experiments to evaluate the causal impact of mar-
keting interventions. Yet these experiments are often analyzed in isolation, estimating treat-
ment effects separately for each intervention. This limits firms” ability to leverage accumu-
lated experimental knowledge. We develop a two-stage causal machine learning framework
that integrates data across experiments to estimate the conditional incrementality function —
treatment effects expressed as a function of intervention and customer attributes. In the
tirst stage, we construct doubly robust scores within each experiment to obtain unbiased
treatment effect signals. In the second, we employ a deep representation learning architec-
ture that predicts these scores from intervention features and customer covariates, balancing
flexibility with control of model complexity. The framework improves targeting efficiency
and generalizes treatment effect predictions to new or untested interventions.

Combining data from 362 promotion experiments involving more than seven million
customers, we show that synergizing these experiments through our framework substan-
tially outperforms conventional approaches that analyze them separately. We further de-
velop empirical tools to assess attribute shift and concept shift when generalizing to new
offers, finding both to be modest in our setting. By synthesizing information across exper-
iments, our framework transforms historical experimentation into a powerful resource for
personalization.
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1 Introduction

Firms are increasingly adopting personalized interventions to strengthen customer relation-
ships and improve marketing return on investment (Lemmens et al. 2025). In practice, this
requires allocating marketing interventions to customers with the highest potential for incre-
mental gains. A central challenge, however, is accurately capturing heterogeneity in customers’
sensitivity to such interventions. For instance, in the context of retail promotions, some cus-
tomers increase their spending meaningfully in response to modest discounts (e.g., 10% off),
whereas others only change their behavior when offered deep price cuts (e.g., 40% off). Captur-
ing this heterogeneity is essential for effective personalization —without it, firms risk eroding
margins by offering discounts that fail to generate sufficient returns or by foregoing profit op-
portunities from customers who would have responded to smaller incentives.

At the core of this challenge lies the need to estimate how intervention effects vary across
customers. A widely adopted framework for this purpose is conditional average treatment effect
(CATE) modeling, , which quantifies the incremental impact of an intervention conditional on
observed customer covariates. In practice, firms typically operationalize this approach through
three main steps: (i) conduct a randomized controlled experiment for a specific intervention, (ii)
train a CATE model to predict incremental effects based on pre-treatment covariates, and (iii)
target new customers with the highest predicted CATE based on their covariates. By moving
beyond average treatment effects, CATE models provide a systematic framework for identify-
ing which customers are most likely to benefit from an intervention, thereby enabling firms to
allocate marketing resources more efficiently. It has been successfully applied across domains
such as promotional activities (Simester et al.|2020, [Zhang and Misra 2025, Daljord et al.|2023),
product experience (Ye et al.|2025), communications (Ellickson et al.2023), and free trial design
(Yoganarasimhan et al.|2023).

While current methods help firms decide which customers to target with a specific inter-

vention, they provide limited guidance when managers face a broader set of decisions —such



as identifying which customers would respond best to alternative and even untested interven-
tions. One approach to address this challenge is to conduct experiments that include multiple
intervention conditions and estimate separate CATE models for each (e.g.,Zhao and Harinen
2019, Ellickson et al. 2023). However, such models cannot ensure generalization to interven-
tions that were not explicitly tested. A more general solution would conduct a single experi-
ment with a large number of intervention variants and use it to estimate the incremental impact
as a joint function of intervention design features and customer covariates (e.g., |[Ellickson et al.
2024). Although appealing in theory, such experiments are rarely feasible in practice due to
the implementation costs associated with simultaneously testing a large number of treatment
variants and substantial sample size requirements. In addition, firms typically face business
constraints such as limited campaign budgets, competing promotional priorities, and opera-
tional limits on how many interventions can be deployed or monitored at once, all of which
make large-scale multifactorial experimentation difficult to execute in real-world settings.

In contrast, firms routinely conduct randomized controlled trials that assess a single inter-
vention at a time. Over time, these efforts generate a rich archive of experiments encompassing
diverse intervention designs and customer contexts. Despite their potential, such historical ex-
periments are usually analyzed in isolation, leaving valuable information about heterogeneity
in customer responsiveness across interventions underutilized. This gap underscores the need
for a framework that systematically synthesizes past experiments to inform personalization
decisions for both previously tested and novel interventions.

This research introduces a novel approach that leverages firms’ existing experimental data
to enable personalized interventions. Specifically, we propose a causal machine learning frame-
work for estimating the conditional incrementality function (CIF) — treatment effects expressed
as a function of both intervention features and customer covariates —using data from past ex-
periments. By treating each intervention as a structured object characterized by its design fea-
tures, CIF estimation enables personalization that jointly informs targeting decisions (whom to

serve) and design decisions (what to offer). We show that by systematically pooling informa-



tion across multiple experiments, our framework substantially improves estimation accuracy
by leveraging existing experimental data. It also enables managers to generalize insights be-
yond previously tested interventions, design more effective targeting strategies for new offers,
and avoid the need for simultaneous large-scale experimentation.

Although pooling information from past randomized experiments can yield richer insights
than analyzing them individually, it also requires additional assumptions to guarantee valid
joint estimation. From an identification standpoint, the standard assumptions that guarantee
causal interpretability within a single experiment, overlap, unconfoundedness, and no interference,
are insufficient for identifying the true CIF as if all interventions were tested simultaneously.
We therefore introduce two additional assumptions necessary to identify the true CIF from
sequentially conducted A/B tests: (i) unobserved intervention features are not systematically
related to customer outcomes (ignorability of unobserved intervention features), and (ii) customer
behavior remains consistent across experiments (stability). Although the stability assumption
may appear strong, it embodies the same foundational premise underlying any predictive task:
that behavioral patterns observed in past data generalize to future customers.

To model the CIF using data from past randomized controlled experiments, we propose
a two-stage estimation framework. In the first stage, we compute a doubly robust (DR) score
(Kennedy|2023) for each observation within each experiment. Under the identification assump-
tions outlined above, the DR score serves as an unbiased signal of the true treatment effect con-
ditional on both intervention features and customer covariates. In the second stage, we train
a predictive model to capture the relationship among intervention features, customer covari-
ates, and the DR score. We provide formal theoretical guarantees showing that this two-stage
framework yields an asymptotically correct estimator of the true CIF with high probability,
provided that (i) firms experiment across the joint intervention—customer space with non-zero
probability, and (ii) the second-stage model is sufficiently expressive but appropriately regu-
larized to avoid overfitting. Under these conditions, the estimator converges to the true CIF as

the number of experiments increases.



The first condition implies that as long as the firm conducts experiments involving diverse
combinations of intervention design features and customer covariates, the two-stage estimation
framework can recover the true CIF given a sufficient number of experiments. This requirement
is relatively mild, as it does not necessitate orthogonal experimental designs. Our empirical
results further show that even when past experiments are not orthogonally designed, jointly
leveraging them yields substantial gains in targeting profitability compared with modeling
them separately. In general, the importance of experimental design depends on how smoothly
customer responses vary across offers and on the diversity of the firm’s past experiments.

The second condition directly guides our choice of the second-stage model. The model must
be flexible enough to capture heterogeneity arising from both intervention design features and
customer covariates, yet constrained to prevent overfitting spurious patterns. To achieve this
balance, we develop a specialized deep representation learning architecture to predict the DR
score across all experiments. The architecture comprises two key components: (i) separate
encoding networks for intervention features and customer covariates, which transform high-
dimensional inputs into low-dimensional representations that capture sources of treatment ef-
fect heterogeneity; and (ii) a unified prediction network that integrates these representations to
predict the DR score jointly across experiments. This design captures complex forms of hetero-
geneity while controlling model complexity, enabling the learned representations to generalize
effectively even when the number of past experiments and sample sizes within each experi-
ment are limited.

We assess the proposed framework in the context of promotional offers for consumer pack-
aged goods (CPG). Leveraging data from 362 randomized controlled experiments encompass-
ing over seven million customers on a leading North American customer engagement platform,
we find that the CIF model delivers markedly stronger performance than conventional meth-
ods that analyze each experiment in isolation. Importantly, even when specific experiments
are excluded from the model’s training set, the CIF model continues to predict treatment ef-

fects in those held-out experiments more accurately than individual CATE models trained di-



rectly on the data from those excluded experiments. This finding highlights the model’s ability
to synthesize generalizable patterns across experiments and to extrapolate effectively to new,
untested interventions.. Our empirical analysis also shows that the deep representation learn-
ing architecture embedded in the CIF model provides additional performance gains over stan-
dard deep learning approaches, underscoring the practical importance of architectural design
in achieving the right balance between flexibility and complexity.

Furthermore, we empirically investigate two practical challenges that arise when general-
izing treatment effect predictions beyond the conditions observed in historical experiments:
(i) new interventions or customer profiles may differ substantially from those in prior experi-
ments (attribute shift), and (ii) customer sensitivity may change over time in ways that violate
the stability assumption (concept shift). Regarding attribute shift, we find that substantial differ-
ences in promotion features for untested offers can reduce the model’s targeting effectiveness,
whereas variations in customer covariates do not have a statistically significant impact on per-
formance. This pattern suggests that, for the focal company, generalizing to new interventions
requires particular attention to offer design features, as large deviations from previously tested
promotions can hinder targeting performance. By contrast, we find no evidence of meaningful
performance degradation when the distribution of customer covariates changes.

Regarding concept shift, we develop an empirical test that examines whether residual vari-
ation in treatment effects (i.e., variation unexplained by the CIF model) can be explained by the
timing of each experiment. The results reveal no systematic relationship between treatment
timing and residual effects, indicating that concept shift is unlikely to pose a major concern in
our empirical setting. More broadly, these empirical assessments offer managers practical guid-
ance on when and how insights from past experiments can be reliably leveraged to personalize
future marketing interventions.

Our contributions are as follows. Methodologically, we integrate ideas from causal infer-
ence and machine learning to develop a framework that leverages past experiments to estimate

treatment effects as a joint function of intervention features and customer covariates. We estab-



lish formal identification conditions under which past experiments allow recovery of the true
CIF. By pooling information across experiments, the framework improves targeting efficiency
for tested interventions relative to estimating treatment effects separately within each experi-
ment. Moreover, it enables prediction for interventions not previously tested and outperforms
models trained solely on the experimental data from those interventions. In addition, we in-
troduce empirical strategies to evaluate two practical challenges when applying such models
in real-world settings: attribute shift (differences in intervention features or customer profiles
across contexts) and concept shift (changes in customer sensitivity over time).

Managerially, we demonstrate that firms’ existing archives of randomized experiments,
routinely collected but rarely exploited beyond single-offer evaluation, can be transformed into
a scalable asset for personalization. By leveraging these experiments, managers can better align
interventions with customers and improve marketing return on investment without resorting
to costly, large-scale multi-treatment trials. Moreover, we empirically examine concerns that
attribute shift and concept shift could limit the applicability of models trained on past exper-
iments. Our analysis shows that both shifts are modest in our context and have no material
impact on targeting effectiveness. Together, these findings demonstrate that synergizing past
experiments is not only theoretically sound but also practically feasible and valuable for firms
seeking to personalize marketing interventions.

The remainder of the paper is structured as follows. Section 2| reviews the related literature.
Section [3| introduces the proposed two-stage estimation framework and discusses its identifi-
cation requirements. Section 4] describes the empirical context and data. Section [5| outlines the
implementation of our approach and alternative benchmarks. Section[6|presents results on tar-
geting existing interventions and generalizing to new ones. Section [/|illustrates how firms can
apply the framework to design personalized promotion offers. Section [§| examines the extent
of attribute shift and concept shift in our setting. Finally, Section [9]concludes with key findings

and directions for future research.



2 Related Literature

Our paper contributes to several streams of literature.

First, we contribute to the literature on heterogeneous treatment effect (HTE) estimation and
targeted marketing interventions. In statistics, most existing work focuses on estimating HTEs
within a single experiment involving a binary treatment condition (e.g., Wager and Athey|2018,
Nie and Wager 2021, Semenova and Chernozhukov|2021, Kennedy|2023). In marketing, most
studies likewise analyze one experiment at a time with a binary treatment condition (e.g., |As-
carza 2018, Simester et al.[2020, Hitsch et al. 2023, Huang and Ascarza2024) or a limited number
of treatment variants, typically estimating separate models for each variant (Yoganarasimhan
et al.2023, |Ye et al.[2025, [Ellickson et al.[2023). More recently, researchers have begun to examine
single experiments with high-dimensional treatments, such as representing multiple text-based
interventions using embeddings derived from large language models and estimating treatment
effects as a function of those embeddings (Ellickson et al.[2024, Imai and Nakamura|2024). Our
work contributes to this literature by showing how firms can leverage multiple single-variant
randomized controlled experiments to estimate treatment effects in high-dimensional treatment
settings. Specifically, we establish formal identification conditions and develop a practical es-
timation framework that recovers treatment effects as a joint function of intervention design
features and customer covariates using an archive of historical experiments, each consisting
of a high-dimensional treatment condition and a control condition. In addition, we demon-
strate that synergizing data from multiple experiments enhances targeting performance, even
for untested treatment variants, compared with relying solely on data from each experiment in
isolation.

Second, our work contributes to the literature on the generalizability of causal effect esti-
mation, which investigates how treatment effects can be extrapolated to new populations or
interventions. Prior research in statistics has primarily focused on transporting treatment ef-

fects to new populations with different covariate distributions (e.g.,(Crump et al. 2009, Petersen



et al.|2012, Nethery et al.[2019| Khan et al.2023, |Zivich et al.|2024, Zhu et al.|2023). Within mar-
keting, [Rafieian (2023) proposes a matrix completion method across multiple experiments to
estimate treatment effects for customer segments that are not jointly observed in both treatment
and control conditions within any tested single intervention. Simester et al.|(2020) empirically
examine how machine learning-based targeting models perform when generalizing to new
customers. Beyond differences in covariate distributions (referred to as attribute shift), they also
highlight the potential issue of changes in customer responsiveness (referred to as concept shift).
Our work contributes to this stream by offering both theoretical and empirical characteriza-
tions of attribute shift and concept shift in the context of HTE estimation for high-dimensional
treatments. Theoretically, we extend classic domain adaptation theory from supervised learn-
ing (Ben-David et al.|2010) to formally characterize the generalization challenges inherent in
HTE estimation. Practically, we develop an empirical framework to detect and quantify both
attribute shift and concept shift using real-world experimental data.

Third, our research relates to the literature on multi-task and transfer learning (see Zhuang
et al.[2020, Zhang and Yang 2021, for surveys). Most literature in computer science focuses on
supervised prediction tasks (e.g., Kini and Manjunatha 2020, Bastani 2021} Xu et al.|2021). Re-
cent work in marketing has shown increasing interest in transferring information across exper-
iments to improve treatment effect estimation. For example, Timoshenko et al.| (2020) propose
a matrix factorization approach that leverages data from related campaigns to improve target-
ing performance in a focal campaign with limited experimental observations. Our research
contributes to this emerging stream in two key ways. First, we demonstrate that synergizing
past experiments not only improves sample size efficiency but also enables generalization to
interventions that have not been directly tested. Second, we extend the theoretical founda-
tions of multi-task learning, originally developed for supervised prediction (Maurer et al. 2016,
Tripuraneni et al.2020), to the setting of treatment effect estimation. Building on this extension,
we further operationalize these ideas into an empirical framework that enables estimation of

treatment effects across multiple experiments.



Fourth, our research broadly relates to the field of marketing customization. The standard
literature emphasizes delivering relevant content or product recommendations by predicting
click or purchase probabilities (e.g., |/Ansari and Mela| 2003, Yoganarasimhan [2020, (Gabel and
Timoshenko| 2022, [Liberali and Ferecatu|2022). More recent studies have examined the treat-
ment effects of customizable components within interventions (Wang et al.|2016, Ellickson et al.
2023, Daljord et al,|2023), but these typically focus on simplified intervention spaces and esti-
mate average treatment effects across coarse customer segments using linear models. Our re-
search develops a flexible machine learning framework that estimates heterogeneous treatment
effects across high-dimensional intervention design features and customer covariates. This al-
lows firms to design and target interventions based on incremental impact and enables more
precise and granular personalization.

Finally, this paper contributes to the growing literature on representation learning in mar-
keting. Prior research has primarily applied representation learning to compress or integrate
high-dimensional product and customer data. For example, Dew et al|(2022) develop a mul-
timodal framework that combines diverse data sources such as logos, (Gabel et al.|(2019) and
Chen et al.|(2022) adapt Word2Vec (Mikolov et al.[2013) to learn product embeddings from co-
purchasing behavior, and Ma et al.| (2025) combines multiple customer signals to create state
representations that guide personalization decisions. We extend this stream of research by ap-
plying multi-task representation learning (Maurer et al.| 2016, Tripuraneni et al. 2020) to the
challenge of predicting treatment effects across many separate A /B experiments. We adapt the
theoretical framework of [Tripuraneni et al.| (2020) to establish guarantees for our two-stage CIF
estimation problem, where the prediction target is a noisy proxy (the DR score), and the ob-
jective is to recover a unified treatment effect function across many separate A /B experiments.
Our analysis formally characterizes the importance of model flexibility and complexity in this

setting, providing guidance for constructing treatment effect prediction models.



3 Model
3.1 Problem Setup

Consider a company that seeks to improve a business outcome by delivering a marketing in-
tervention. For instance, the company might send promotional offers to customers to increase
their spending on the promoted items. Each intervention is characterized by a vector of design
features Z € Z, such as discount levels or promoted product categories, and each customer is
described by a vector of pre-treatment covariates X € X, such as their demographics or prior
purchase behaviors.

The company is interested in designing personalized interventions aimed at maximizing
their incremental impact on key business outcomes, such as spending or profit from promoted
items. A key step toward this objective is to estimate each customer’s sensitivity to an inter-
vention, conditional on both the intervention design features and the customer covariates . We

define this response function as the Conditional Incrementality Function (CIF):
7(2,X) = E[Y(Z) - Y(0)[X], 1)

where Y (Z) is the potential outcome of the business objective (e.g., spending on promoted
items) for a customer should they receive an intervention with design features Z, and Y (0) is
the potential outcome in the absence of the focal intervention. In other words, the CIF captures
how much more a given customer is expected to respond to a specific intervention relative to
not receiving it.

While the CIF is conceptually related to the conventional CATE framework, it differs in an
important respect. Standard CATE approaches are typically designed to evaluate the effect of
a single treatment relative to a control condition. In contrast, the CIF extends this framework
by representing each intervention as a structured object characterized by its design features,
Z. The objective is to quantify the incremental impact of alternative offer designs, thereby
informing both targeting (whom to serve) and design (what to offer) decisions within a unified

modeling framework.
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3.1.1 Archive of Historical Experiments

To estimate the CIF directly, a firm could, in principle, implement a single multi-treatment ex-
periment that simultaneously tests a wide range of offers defined by different combinations of
design features (analogous to a conjoint or factorial experimental design) together with a no-
intervention control group. However, such an approach is rarely used in practice. First, such
an experiment is often difficult because deploying thousands of intervention variants requires
significant coordination across marketing, IT, and product teams. Second, data and budget con-
straints make such experiments costly and often underpowered —reliable estimates for many
treatments would require far larger samples than most firms can afford. Third, managers tend
to prefer simplicity: testing one intervention variant at a time is easier to manage, less costly,
and allows faster rollout.

As a result, instead of attempting large-scale factorial experiments with thousands of in-
tervention variants, firms typically run a sequence of smaller experiments, each focused on a
single treatment. For example, a retailer might test whether offering a 20% discount increases
spending by comparing a treatment group that receives the coupon to a control group that
does not. Such tests are often limited to specific customer segments, such as recent purchasers
or loyalty program members, to ensure relevance and limit costs.

The standard approach in the literature for leveraging such experimental data has been to
estimate a separate CATE model for each individual experiment (e.g.,Wager and Athey|2018),
Ascarza|2018, Hitsch et al. 2023, Haushofer et al.2025). While widely used, this strategy has im-
portant limitations. First, estimating CATEs independently for each experiment fails to exploit
the underlying structure linking intervention design features to customer responses. Conse-
quently, this approach cannot be used to make informed decisions about untested variants
without running new experiments. Second, individual experiments often contain too few ob-
servations to support precise estimation of CATEs. This sparsity reduces statistical efficiency

and limits the reliability of the resulting models. Third, when experiments are restricted to a
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narrow customer segment, the resulting CATE estimates have limited external validity. In such
cases, predictions for customers outside the tested segment may be inaccurate or biased.

To overcome these limitations, we propose a modeling framework that integrates data from
multiple single-variant experiments to estimate the CIF defined in Equation (I). This framework
directly addresses the shortcomings of estimating separate CATE models for each experiment.
First, by explicitly incorporating intervention design features, it allows firms to make targeting
and design decisions for new, untested offers. Second, by pooling data across experiments, the
framework substantially increases statistical power, yielding more precise and reliable treat-
ment effect estimates, particularly in settings where individual experiments are too small to
provide credible estimates on their own. Third, by combining information from multiple ex-
periments that span different customer segments, the framework improves generalizability

beyond the narrow customer pools of a single experiment.

3.1.2 Identification of CIF from Multiple Past Experiments

To formalize the idea of synergizing past experiments, consider a firm that has previously con-
ducted K experiments, each designed to evaluate a distinct marketing intervention. In exper-
iment k£ € {1,2,---, K}, a unique intervention characterized by design features Z; € Z was
tested on a selected pool of customers. Each experiment included both a treatment group,
which received the intervention, and a control group, which did not, enabling valid compar-
isons of outcomes between treated and untreated customers.

Let W, € {0,1} denote the treatment assignment for the i-th observation in experiment
k, where W), = 1 indicates assignment to the treatment condition and W), = 0 indicates
assignment to the control condition. For each observation in an experiment, the firm observes
a vector of pre-treatment covariates Xy, ;, with support X, C X, as well as the realized outcome
of interest Y}, ;. We define the potential outcomes as {Y};(Wy; = 1), Yy.:(Wy,; = 0)}, representing
the outcomes for observation 7 in experiment £ if they were to receive the intervention (W}, ; =

1) or not receive the intervention (W}, = 0), respectively.
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We begin by outlining the assumptions under which the CIF can be pointwise identified
using data from past single-variant experiments. The first three assumptions align with the
standard conditions for identifying causal effects within a single experiment (Imbens and Ru-

bin|2015).

Assumption 1 (Overlap) For each experiment k = 1,--- | K, the assignment of treatment is subject
to random variation, that is, 0 < P(Wy,; = 1|1Xy,;) < 1, Xy, € Ak

Overlap requires that each unit in the observed covariate space X}, has a positive probability
of receiving either treatment or control, ensuring that treatment effects can be estimated from

the observed data.

Assumption 2 (Unconfoundedness) For each experiment k € 1,--- | K, the treatment assignment
is free from unobserved confounders, that is, {Y.;(Wy; = 1), Yi,(Wi; = 0)} L Wi | Xi .
Unconfoundedness ensures that treatment assignment is as good as random once we condi-
tion on the observed customer covariates. This assumption is satisfied by design in randomized
experiments and can also be extended to observational causal inference settings, provided that

treatment assignment depends solely on observed customer characteristics.

Assumption 3 (No Interference) We assume that the potential outcomes for observation i in re-
sponse to intervention k are independent of the treatment assignments of all other customers and all
other interventions. Formally, {Y},;(Wi; = 1), Yi;(Wii = 0)} L { Wi it } i) (ki)

No Interference rules out spillover effects, ensuring that a customer’s outcome depends only
on their own treatment and is not influenced by treatments assigned to other customers or the
presence of other interventions[[| Together, these conditions ensure that we can identify the
causal effect of each specific intervention.

To ensure that pooling data across experiments and modeling them jointly yields a valid
estimation of the CIF (evaluated at the design features and covariates observed in past experi-

mental data), we introduce two additional assumptions.

In our empirical setting, the likelihood of intervention interference is minimal for two reasons. First, customers did not receive multiple
promotional interventions for the same items simultaneously, and the outcome variable captures only purchases of the items promoted by
the focal intervention. This ensures that any observed sales lift can be attributed to a single intervention. Second, because the company
implemented complete randomization, both treatment and control groups had an equal chance of receiving other unrelated interventions. As
a result, any differences in outcomes between the two groups can be causally attributed to receiving the focal intervention. However, when
experiments are not fully randomized, the risk of intervention interference increases.
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Assumption 4 (Ignorability of Unobserved Design Features) The unobserved aspects of the
intervention — that is, features not captured by the design vector Z,, — are assumed not to systematically

influence the conditional mean outcome given the customer covariates. Formally, we assume

E[Ym(Wm = 1) \ Zlcan,i] = E[Yk,i(zk) \ le] and E[Ym(Wm = O)’Zkaxk,i] = E[Yk,i(0> ’ Xm]

Ignorability of Unobserved Design Features requires that any unobserved design features not
captured in Z; do not systematically influence customer responses once we condition on the
observed design features and customer covariates. For example, if Z;, excludes visual imagery
elements in a promotional offer, the assumption implies that the quality of such imagery is
not systematically correlated with other observed design attributes (e.g., product category or
discount level). Otherwise, for product categories that tend to feature higher-quality images,
the expected treated outcome (E[Y} ;(Wy; = 1) | Zy, X}.;]) would exceed the counterfactual ex-
pectation under the observed design features alone (E[Y};(Zx) | Xk ]). Note that if all relevant

design attributes are observed, this assumption holds automaticallyf|

Assumption 5 (Stability) Customer behavior is assumed to be stable in the sense that, for any ex-
periment k € 1,..., K, the conditional expectation of the potential outcome consistently represents the

true outcome of interest, that is,
E[Y:i(Zy) | Xi; = X] =E[Y(Z)|X] and E[Y;;(0) | Xy, = X] = E[Y(0)|X].

Stability requires that the relationship between customer covariates, intervention design,
and outcomes remains consistent across experiments. In other words, the potential outcomes
observed in each experiment should reflect draws from the same underlying behavioral pro-
cess that the firm aims to model. Violations of this assumption, due to shifts in customer pref-
erences or systematic differences in populations across experiments, would require additional
modeling assumptions to account for behavioral changes over time.

Together, these five assumptions ensure that: (i) treatment effect estimates from past ex-

periments can be given a causal interpretation (Assumptions [I|to3), and (ii) synergizing data

2This is a relaxation of Assumption 2 in|Ellickson et al,[(2024), which requires that text embeddings fully capture all relevant features of
text content.
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across experiments and modeling them jointly enables pointwise identification of the CIF (As-
sumptions [ to [5). The following theorem establishes the nonparametric identification of the

CIF using data from past experiments.

Theorem 1 (CIF Identification) Under Assumption |I|to Assumption 5| for any design feature Z €
Z that was tested in at least one experiment (i.e., there exists k € {1,--- , K} such that Zy = Z) and
any individual with covariates X € X, the CIF defined in Equation (1)) is point-wise identified such that
T(Zi, Xpi) = E[Vii Wi = 1, X i) — E[Yii[Wii = 0, Xy

The proof of Theorem [1]is provided in[Web Appendix A.1l This theorem implies that, instead

of running a single large experiment that tests all interventions simultaneously, a company
can combine multiple independently conducted experiments to learn how different types of
customers respond to various intervention designs, without relying on parametric assumptions

about the underlying relationships.

3.2 Two-stage Framework for Incrementality Prediction

Next, we propose a two-stage framework for estimating the CIF by synergizing past experi-
ments, building on the transformed outcome regression approach developed for CATE estima-
tion (e.g.,/Semenova and Chernozhukov|2021, Nie and Wager 2021}, Kennedy|2023). In the first
stage, we construct an unbiased proxy for the conditional average treatment effect within each
experiment using the doubly robust (DR) score (Kennedy|2023). In the second stage, we train a
machine learning model to predict this score using intervention design features and customer
covariates. This two-stage approach enables flexible, data-efficient estimation of the CIF across
a broad set of intervention and customer combinations that fall within the range covered by

past experiments, even when individual experiments are limited in scope.

3.2.1 Stage 1: Doubly Robust Score Construction

Theorem [1| shows that when Assumptions [I| through 5] are satisfied, the standard CATE func-

tion within a given experiment is equivalent to the CIF evaluated at the design features of
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the intervention tested in that experiment. This equivalence justifies using the DR score com-
puted within each single experiment as a valid prediction target for estimating a CIF model
across multiple experiments. The following corollary formalizes this result, showing that the

DR score from each experiment provides an unbiased signal for the true CIF.

Corollary 1 (Unbiased Score) Let i, (x) = E[Y}, ;|Wi; = w, Xy, = x| be the conditional expected
outcome for intervention k, and let m,(x) = P[Wy; = 1|Xy; = x| denote the propensity score of being
treated in experiment k. Then, under Assumption[I|to Assumption 5} the DR score is an unbiased signal

for the CIF defined in (1)):

W 3T, X i
T(Zk, Xk,i) =K [,Ukl(Xk:z) - Nk,o(Xk,i) + Wk(X::i)[lfsrkg(l,i)] [Yk,i — Mk Wy, (le)} ) Zy, Xm} .

The proof is provided in[Web Appendix A.2| Corollary[I|shows that the conditional expectation

of the DR score, when constructed separately for each tested intervention, is equal to the CIF
evaluated at the corresponding intervention design features and customer covariates. This re-
sult suggests a two-stage estimation strategy: first, compute the empirical DR score within each
experiment, and then fit a model that estimates the CIF by learning the relationship between
the DR scores, intervention design features, and customer covariates across experiments.

To empirically construct the DR score, we apply the standard cross-fitting procedure (Se-
menova and Chernozhukov|2021} Nie and Wager|2021). Specifically, for each experiment k, we
build a machine learning model ,Ek_g (X},;) that predicts the expected outcome Y}, ; for each treat-
ment condition Wj,; = w , conditional on the covariates Xmﬂ The superscript [—i] indicates
that the model is trained on data excluding observation . For the propensity score, we leverage
the fact that our empirical setting involves fully randomized experiments. In such cases, the
true propensity score is known and corresponds to the empirical proportion of observations
assigned to each treatment arm. Importantly, when the true propensity score is known, either

through randomization, as in our setting, or via a known treatment rule, the DR score remains

3Nie and Wager] (2021) recommend selecting the conditional outcome model that minimizes prediction error, as this indicates that the
model captures baseline outcome variation more effectively.
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unbiased even if the outcome model is misspecified (Funk et al.[2011) (seeWeb Appendix A.2|

for a proof).

In observational studies, where treatment assignment depends on covariates and the true
propensity score is unknown, the same cross-fitting procedure can be applied to estimate the
propensity score using a machine learning model. In such a setting, it is critical that both the
outcome and propensity score models are estimated with sufficiently high quality. Specifically,
their mean squared errors must converge to zero at appropriate rates to ensure consistent esti-

mation of treatment effects (Chernozhukov et al.[2018, Semenova and Chernozhukov|2021).

3.2.2 Stage 2: CIF estimation

After constructing the DR scores for each experiment, we pool them across experiments to cre-
ate a unified dataset for estimating the CIF. While any regression-type models can be used as
the second-stage model, there are two important properties an ideal second-stage model should
have. First, the model should be sufficiently flexible to capture treatment effect heterogeneity
across high-dimensional design features and customer covariates. In this regard, flexible ma-
chine learning approaches such as deep neural networks offer a plausible solution, as they can
learn complex nonlinear relationships without requiring strong parametric assumptions.
Second, the model should maintain constrained complexity to prevent overfitting and en-
sure stable generalization. In practice, real-world experiments often have small sample sizes,
providing limited information to estimate heterogeneous effects within specific designs or cus-
tomer segments. Firms also tend to test only a narrow subset of potential interventions, result-
ing in sparse coverage of the broader design space. Moreover, marketing outcomes typically
exhibit high noise and weak signals (Huang and Ascarza|[2024), which increases the risk that
highly flexible models (such as deep neural networks) capture spurious rather than meaning-
ful patterns. These challenges make it essential to control model complexity so that estimated

relationships can generalize beyond the observed experiments.
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Together, these two considerations are important when selecting the second-stage model
for CIF estimation: the model should be expressive enough to capture rich heterogeneity while
sufficiently constrained to prevent overfitting. Guided by these principles, we develop a cus-

tomized deep learning architecture that balances flexibility with constrained complexity.

Model Architecture. To balance model expressiveness with the need to control model com-
plexity, we implement a deep representation learning (DRL) architecture as the second-stage
model. This approach jointly learns low-dimensional representations of intervention design
features and customer covariates while predicting DR scores across all tested interventions.
The architecture is designed to accomplish two objectives. First, it extracts compact and dense
representations from high-dimensional inputs that effectively capture heterogeneous treatment
effects. Second, it learns a shared predictive function that maps these representations to DR
scores across experiments.

Figure|l| presents the proposed model architecture. The model first maps high-dimensional
design features Z; and customer covariates Xy, into low-dimensional representations: ¢, for
intervention design and x;,; for customer covariates through two separate deep neural net-
works: the design encoder ® and the covariate encoder W. The resulting representations are
concatenated and fed into a prediction network, which predict the DR score (denoted as 7 ;)
for each observation in experiment k.

The proposed representation learning architecture offers two practical advantages for man-
aging model complexity. First, it performs effective dimensionality reduction by compressing
high-dimensional and potentially irrelevant inputs into compact representations that retain
the information most predictive of treatment effects. Second, by learning design and covari-
ate representations separately, the model introduces an inherent form of regularization, since
the representation learning stage prevents direct interactions between design features and cus-
tomer covariates. This separate structure helps disentangle the respective contributions of de-
sign features and customer covariates to treatment effects and mitigates overfitting to spurious

feature-covariate interactions.
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Figure 1: Proposed Model Architecture for Incrementality Prediction
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In addition, learning separate representations facilitates downstream analyses that deepen
understanding of treatment effect heterogeneity. For example, clustering the design representa-
tions reveals groups of interventions that produce similar treatment effect patterns, offering ac-
tionable guidance for identifying which types of interventions the model views as functionally
equivalent. Similarly, clustering the customer representations uncovers segments of customers
with comparable treatment responsiveness, helping managers identify which covariates are
most useful for segmentation when the objective is to target customers based on expected in-
cremental impact.

Once the representations ¢, and x;,; are extracted, we construct a prediction network that
takes their concatenation as input to predict DR scores across all experiments. Importantly,
rather than adopting the common multi-task learning approach of building separate predic-
tion networks for each intervention (Maurer et al. 2016, [Iripuraneni et al.[|2020), we employ a
single prediction network with parameters shared across experiments. This choice is motivated

by two considerations. First, intervention-specific networks rely on the data from individual
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experiments to estimate parameters, which prevents them from predicting treatment effects to
new, untested designs. Second, individual experiments typically have limited sample sizes,
making the estimation of neural network models unstable. By pooling information across ex-

periments and sharing parameters, the model produces more accurate and stable predictions.

Model Calibration. We jointly calibrate the three neural networks (®, ¥, and 7) simultane-
ously so that ® and ¥ learn representations most informative for predicting treatment effects
across interventions. To do so, we pool data from all experiments and estimate ®, ¥, and 7 by

minimizing the squared error between the model’s predictions and the DR scores:

arg mlnz Z U (X)) — Fri” 2)

7,P,W

where N, denotes the number of observations in experiment £, and ;, is the relative importance
weight assigned to each intervention. For simplicity, we set 7, = 1 for all interventions in our
empirical application. In practice, however, companies may choose to assign different weights
to align with their specific objectives. For example, if they wish to prioritize accuracy for certain
types of interventions, they can assign higher weights to those interventions. Alternatively, the

weights can be treated as tuning parameters to optimize an objective function.

3.3 Theoretical Guarantees

In|Web Appendix B, we provide theoretical guarantees for the proposed CIF estimation frame-

work. Specifically, we show that if the firm’s experimentation procedure ensures that all re-
gions of the joint design—covariate space are sampled with nonzero probability, and the model
is sufficiently expressive to approximate the true CIF, then the mean squared error (MSE) of the
two-stage CIF estimator converges to zero with high probability as the number of experiments
(and thus the total sample size) increases.

To establish this result, we extend the theoretical framework of [Iripuraneni et al.| (2020),
which analyzes multitask learning in standard supervised learning settings, to our two-stage

CIF estimation framework. The resulting upper bound on mean squared error depends on
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two main factors: (i) the number of tested interventions and the sample size within each ex-
periment, and (ii) the Gaussian complexity (Bartlett and Mendelson|[2002) of the second-stage
model, which captures its capacity to overfit random noise. The latter term can be further de-
composed into the complexity of the representation learning modules that encode intervention
designs and customer covariates, and the complexity of the prediction network that maps these
representations into CIF estimates.

We then derive an upper bound on the MSE of the second-stage estimator when using deep
neural networks (DNNs) by applying the general complexity bound for DNNSs established in
Golowich et al|(2018). The result suggests that the MSE converges to zero with high prob-
ability when the number of experiments approaches infinity. Besides, it demonstrates how
our architectural choices — using separate encoding networks for interventions and customers,
and sharing parameters across experiments during prediction —serve as regularization mech-
anisms that constrain model complexity. Consequently, the proposed architecture is less prone
to overfitting than standard DNNs.

Note that the theoretical guarantees are not tied to the specific deep learning architecture we
propose. Any model class that is sufficiently expressive yet adequately controlled in complex-
ity can, in principle, recover the true CIF given enough experimental data. While our empirical
analyses show that the proposed architecture performs particularly well in the current setting,
alternative models may prove superior in different empirical contexts. For this reason, we rec-
ommend that firms evaluate a range of candidate model classes and select the one that delivers

the strongest holdout performance prior to implementation.
3.4 Generalization to New Data

Beyond predictive accuracy on past experiments, the ability of any CIF model trained on his-
torical data to generalize to new contexts depends on two critical factors (Simester et al. 2020).
First, the degree of distributional differences in design features or customer covariates between
past and new data, commonly referred to as attribute shift. Second, changes in the underlying

CIF function across contexts, which represent violations of Assumption |5 and are commonly
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termed concept shift. In|Web Appendix C, we formalize how these factors affect generalization

by applying the domain adaptation framework of Ben-David et al.|(2010) to our setting.

To assess whether these concerns present significant practical challenges, we develop an
empirical approach to evaluate the three factors outlined above using the experimental data
from our application. First, in Section we evaluate the impact of attribute shift by hold-
ing out entire experiments and examining how model performance varies with the similarity
between the training and holdout sets. Specifically, we measure the distance between the inter-
vention design features and customer covariates of the held-out experiments relative to those
in the training data. For design features, we observe a clear inverse relationship: as held-out
interventions become more dissimilar from those previously tested, targeting profitability de-
clines. This pattern indicates that attribute shift in intervention design features can be a bound-
ary condition in our empirical setting. In contrast, we find no systematic relationship between
covariate distance and targeting profitability once the CIF model is jointly estimated across
experiments, suggesting that shifts in customer covariate distributions are less problematic in
this context.

Second, in Section 8.2, we provide evidence that concept shift is unlikely to be a significant
concern in our empirical context. Concept shift arises when the underlying relationship among
design features, customer covariates, and treatment effects evolves over time. To evaluate this
possibility, we examine whether the residual variation in the DR score, that is, the portion not
explained by intervention design features or customer covariates, systematically varies with
the timing of intervention launches. We find no such pattern: intervention timing does not
account for any residual variation in the DR score. This result indicates that concept shift is not
a key issue in our setting and supports the validity of using past experimental data to inform
tuture targeting decisions.

In conclusion, although both attribute shift and concept shift are potential challenges when
leveraging past experiments, our empirical evidence suggests that they are not material con-

cerns in this application. Importantly, we provide a practical approach that firms can apply
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to diagnose whether attribute or concept shift may limit the usefulness of past experiments in
their own contexts. By systematically evaluating these risks, managers can determine whether

past experimental data can be reliably leveraged for personalizing future interventions.

4 Empirical Context and Data

4.1 Empirical Context

We evaluate our method using data from a North America-based consumer engagement plat-
form. On this platform, customers earn reward points by uploading shopping receipts, which
they can redeem for gift cards or products. The platform generates revenue by providing cus-
tomer relationship management services to consumer packaged goods (CPG) companies and
retailers (collectively referred to as partners), who pay commissions in exchange for promo-
tional exposure. A central feature of the platform is the deployment of promotional offers
on behalf of these partners (e.g., “Buy two bottles of wine from Brand W and receive 2,000
points”), which are designed to incentivize purchases. These offers are prominently displayed
on the platform’s discovery page, and customers automatically receive the specified rewards
when they submit receipts that meet the offer conditions.

While the platform benefits from increased customer engagement and overall receipt up-
loads, the success of its operations is evaluated at the offer level, as partners pay to run specific
promotional campaigns. Therefore, the platform’s primary objective in promotions is to help
each partner identify which customers should receive each offer to drive incremental spending

and, in turn, profits.
4.2 Data Description

To quantify the incremental impact of promotional offers, the platform routinely conducts ran-
domized controlled experiments for each offer. Our analysis draws on 362 such experiments
conducted between October 2022 and April 2023, each testing a distinct promotion on sam-
ples ranging from 10,000 to 200,000 customers. In total, the dataset comprises 7,591,203 unique

customers and 30,701,442 offer—customer observations across these 362 experiments.

23



4.2.1 Experiments

For each experiment, the platform tested a specific promotional offer on a predefined pool of
eligible customers. This pool was typically determined based on partner-specific requirements,
such as including all customers, prior purchasers of the brand, or customers with certain de-
mographic characteristics. Customers in the eligible pool were then randomly assigned to
treatment (90%) and control (10%) groups. Randomization was conducted independently of
login activity and included all eligible customers, regardless of whether they accessed the plat-
form during the campaign period. Only the treatment group received the focal promotion; the
control group received no alternative offer.

Aside from the focal offer being tested, all customers continued to receive baseline promo-
tional offers that were unrelated to the study. Because randomization was orthogonal to these
baseline offers, exposure to unrelated promotions was balanced across treatment and control

groups. Therefore, any differences in spending on the promoted items can be causally at-

tributed to the focal offer[f Detailed randomization checks are provided in[Web Appendix D.1]

The platform’s primary objective is to increase total dollar spending on promoted items
during the effective period of the offers. Customer spending was measured based on uploaded
receipts. If a customer did not upload a receipt, the platform recorded no purchase, and their
spending was coded as zerof| Figure [l shows the ATE of each offer along with its 95% con-
fidence interval. Using a two-tailed t-test at the 5% significance level, we find that only 33%

of offers produce a statistically significant increase in spending on promoted itemg’ This sug-

4 Although a small subset of customers were eligible for multiple experiments and could receive more than one treatment offer simultane-
ously, we believe that any potential interference is minimal and find no evidence of significant interference effects. First, on average, only 7%
of customers received multiple experimental offers at the same time, and none of these offers promoted the same items. Second, customers in
both the treatment and control groups of the focal offer were equally likely to receive other experimental offers, minimizing the risk of system-
atic bias. Finally, in[Web Appendix D.2] we show that the number of concurrent experimental offers — regardless of whether they belonged to
the same product category — does not significantly affect the treatment effect of the focal offer on spending for the promoted items.

5For customers in the treatment group, the observed increase in spending may partly reflect a higher likelihood of receipt submission
rather than a pure increase in consumption. Since the platform records purchases only when receipts are uploaded, we cannot fully disentangle
whether the effect is driven by greater purchase activity or by a higher propensity to submit receipts. This caveat should be kept in mind when
interpreting the treatment effect estimates.

®We also note that while most offers did not produce statistically significant changes in spending, only three offers (0.8%) produced
statistically significant reductions in spending on promoted items.
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gests that the pool of eligible customers was likely not systematically selected based on prior
expectations of offer effectiveness.
Figure 2: Average Treatment Effects Across 362 Experiments
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Note. Each point reports the average treatment effect of a promotional offer together with its 95% confidence interval.

4.2.2 Offer Features

Each promotional offer is defined by several key design features: (i) the promoted item(s) and
their product categories, (ii) the point-earning criteria, such as minimum purchase amounts
or quantities, (iii) the number of points awarded upon meeting these criteria, and (iv) addi-
tional details, including redemption limits or specific promotional tactics. In total, our dataset
includes fourteen design features (six numerical and eight categorical) which expand to 46

variables after dummy encoding. Table [I| provides a summary of these features.
4.2.3 Customer Covariates

For each observation in an experiment, we construct 40 pre-treatment covariates using only
data recorded before the experiment began. This ensures that these covariates describe the cus-
tomer’s characteristics and behaviors prior to treatment assignment, and are not influenced by

any outcomes that occurred during or after the experiment. Table[2presents summary statistics

for selected customer covariates. The full list of covariates is provided in|Web Appendix D.1}

The covariates are organized into three groups:
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Table 1: Summary of Offer Design Features

DISCRETE DESIGN FEATURES
Variable Unique Value Top Counts
Is the offer a multi-transaction offer? 2 False: 211, True: 151
Is the offer stackable? 2 False: 41, True: 321
Criteria: Purchase from selected items 2 False: 311, True: 51
Criteria: Bulk purchase 2 False: 238, True: 124
2
2

Criteria: Available for club members only False: 343, True: 19

Criteria: Actions for reward claim Quantity: 314, Spending: 48

Promoted product category 19 Personal Care: 70, Baby: 64, Beer: 60, Wine: 46
Promotion tactic 14 Dollar_or_unit: 170, Frequency: 71

NUMERICAL DESIGN FEATURES

Variable #Missing  Mean S.D. Min P25 Median P75 Max
Points awarded 0 2,540 2,345 350 1000 2,000 3,000 20,000
Minimum required spending ($) 313 176 111 5.0 8.0 15.0 30.0 50.0
Minimum required quantity 49 1.38  0.62 1 1 1 2 4
Times the offer can be redeemed 0 419 7.02 1 1 1 3 25
Maximum redemption times per transaction 0 1.50 1.22 1 1 1 1 5
Duration of the promotion (in days) 0 460 306 5 30 31 63 176

Note. Consider the offer “Spend $30 on selected sizes of diapers and earn 3,000 points” as an example. It includes the criterion purchase from
selected items and specifies a spending threshold to qualify for the reward. Besides, it is classified as a single-transaction, non-stackable offer. The
variable “Is the offer stackable?” indicates whether qualifying purchases can count toward other offers simultaneously. The “Promotion tactic”
variable captures the strategic intent of the offer. For example, “Dollar_or_unit” means that the offer is designed to increase total spending or
unit sales of specific items, while “Frequency” suggests that the offer encourages more frequent purchases of those items.

Demographic and Account Attributes: Demographic and account-level information, includ-
ing gender, age, platform tenure (measured at the time the offer was received), and whether
the customer joined via a referral.

Non-contextual Behaviors: Overall shopping behavior during the 60 days before the experi-

ment. This includes:

Recency: Whether a receipt was uploaded in the last 7, 30, or 60 days.

* Frequency: Total number of receipts uploaded.

Monetary value: Average order value and average item count per receipt.

Category and merchant preferences: Share of receipts that include items from a specific product

category or from a particular merchant.

Contextual Behaviors: Purchasing behavior related to the items promoted in the offer, mea-
sured over the 60 days before the experiment. Metrics include how recently the customer pur-

chased these items, how often they purchased them, and how much they spent on them.
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Table 2:

Summary of Selected Covariates

Variable Mean Std. Dev. Min Pctl. 25 Pctl. 75 Max
Customer Attributes
Is from referral? 0.65 0.48 0 0 1
Gender = male 0.14 0.48 0 0 0
Gender = female 0.78 0.48 0 1 1
Age 40 16 0 30 51 101
Tenure of membership (weeks) 19 15 6.1 6.5 28 646
NON-CONTEXTURAL BEHAVIORS (ALL RECEIPTS)
# of receipts 58 69 0 3 86 2,903
Average order value (AOV) 54 90 0 18 59 5,145
Items per order 7 12 0 3 9 622
Uploaded a receipt in the past 7 days 0.63 0.48 0 0 1 1
Uploaded a receipt in the past 30 days ~ 0.76 0.43 0 1 1 1
Uploaded a receipt in the past 60 days ~ 0.78 0.42 0 1 1 1
Beverages 0.03 0.04 0.00 0.00 0.05 1.00
Candy 0.01 0.02 0.00 0.00 0.01 1.00
Dairy 0.02 0.03 0.00 0.00 0.03 1.00
CONTEXTURAL BEHAVIORS (RECEIPTS RELATED TO PROMOTED ITEMS)
# of receipts 0.34 1.3 0 0 0 406
Average order value (AOV) 2.7 7.7 0 0 0 220
Items per order 0.24 0.55 0 0 0 12
Uploaded a receipt in the past 7 days ~ 0.085 0.28 0 0 0
Uploaded a receipt in the past 30 days ~ 0.14 0.34 0 0 0
Uploaded a receipt in the past 60 days ~ 0.17 0.38 0 0 0

4.2.4 Eligible Pools

In each experiment, the platform tested a promotional offer on a specific pool of eligible cus-
tomers. This design introduces heterogeneity in covariate distributions across experiments.
Figure 3| illustrates the distributional differences of selected covariates across experiments.
Each blue point represents the mean value for a given experiment, while the gray area shows
the interquartile range (from the first to the third quartile) of each covariate. For example, in the

top-right panel, each point indicates the average number of uploaded receipts for all customers

within a specific experiment.

The results suggest that each individual experiment focuses on a relatively narrow customer
pool. Therefore, combining data from multiple experiments provides broader coverage of the

covariate space and may enhance the model’s external validity. In Section |8, we show that
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Figure 3: Distribution of Selected Covariates Across Experiments
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Note: Each point represents the mean value for a given experiment, while the gray area indicates the interquartile range (from the first to the
third quartile) of each covariate. Experiments are sorted by the average value of each selected covariate.

when the proposed model is trained on 181 randomly selected experiments, it can accurately
predict treatment effects for the other 181 holdout experiments whose customer covariate dis-
tributions differ from those in the training set. This finding suggests that it is not necessary
for each experiment to span all customer types; aggregating multiple targeted experiments can

collectively achieve sufficient coverage of the covariate space.

5 Model Implementation

In this section, we describe the implementation of the proposed CIF model, outline benchmarks

for comparison, and introduce the evaluation metrics.

5.1 Implementation of the Proposed Model

We implement the proposed two-stage CIF estimation framework as follows.
5.1.1 Stage 1: Doubly Robust Score Construction

For each experiment, we construct the DR score defined in Equation (1)) using a ten-fold cross-

titting procedure as described in Chernozhukov et al. (2018). To estimate the conditional out-
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come models, we consider three candidate model classes (elastic net, random forest, and XG-

Boost) and select XGBoost given its best predictive accuracy (see Section|Web Appendix E.1|for

model selection details). For the propensity scores, we use the empirical treatment proportion
within each experiment, as treatment assignment was completely randomized. The predicted
outcomes and estimated propensity scores are then substituted into Equation (1) to obtain the

DR score for each offer.
5.1.2 Stage 2: Model Specification and Calibration

To implement the proposed DRL architecture as the second-stage model, we construct a five-
layer fully connected neural network for both the design encoder and the covariate encoder.
The input layers accept 46 dimensions for design features and 40 dimensions for customer co-
variates, respectively. Each network includes three hidden layers with 10 units per layer. The
output layers of the encoding networks produce 10-dimensional representations for both de-
sign features and customer covariates. We employ the Rectified Linear Unit (ReLU) activation
function, o(x) = max(0,z), for all hidden units. For the prediction network, we employ a
tive-layer fully connected neural network. The input to this network is the concatenation of
the 10-dimensional representations from the design and customer encoders, yielding an input
layer of 20 dimensions. Each of the three hidden layers contains 10 units. The output layer
generates the CATE prediction. We apply the ReLU activation function to all hidden units and
use a linear activation function in the output layer to produce the final prediction/]

We calibrate the proposed DRL model by optimizing the loss function in Equation (2)) using
the Adadelta algorithm (Zeiler|2012). This adaptive learning rate method dynamically adjusts
the step size based on historical gradient information, thereby eliminating the need to manually
tune a global learning rate and improving training stability. To further enhance computational
efficiency and stabilize convergence, we employ mini-batch training with 30 observations per

batch and train the network for 10 epochs.

7In [Web Appendix F} we also test shallower and deeper network architectures as well as alternative representation dimensionalities.
Opverall, we find that the results are qualitatively consistent across these variations.
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5.2 Methods for Comparison

We evaluate the performance of the proposed CIF model against two sets of benchmarks.

Individual CATE Models. The first benchmark compares our approach with the conven-
tional method of estimating separate models for each experiment in isolation. Specifically, we
estimate an independent deep neural network (DNN) for each experiment to predict the DR
score. Because design features do not vary within a given offer, they are excluded from these
models. This setup corresponds to a standard DR-learner for CATE estimation (Kennedy|2023)

implemented with a standard fully-connected DNN.

Alternative Deep Learning Architectures for CIF Modeling. The second benchmark evalu-
ates whether the proposed DRL architecture enhances performance relative to alternative neu-
ral network architectures used as the second-stage model within the CIF framework. Specif-
ically, we compare its performance against (i) a standard DNN without the proposed repre-
sentation structure and (ii) a standard DNN that excludes design features altogether. The first
comparison isolates the performance gains attributable to the representation learning structure,
whereas the second assesses the benefit of synergizing past experiments —even without incor-
porating design feature information —relative to modeling each experiment independently.
All models are constructed with the same network depth and a comparable number of param-

eters as the DRL architecture.
5.3 Performance Metrics

We evaluate model performance using two key targeting metrics. First, we assess the model’s
ability to prioritize treatment allocation among customers with high treatment effects, that is,
how effectively it ranks customers by their predicted responsiveness. Second, we evaluate
the resulting profitability when the model is used to determine which customers should be

targeted.
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Treatment Prioritization. We assess treatment prioritization by evaluating each model’s abil-
ity to distinguish observations with high treatment effects from those with low treatment ef-
fects. Specifically, we employ the Area Under the Targeting Operating Characteristic Curve (AU-
TOC; Yadlowsky et al. 2025), a standard metric for assessing how well a model ranks individ-
uals by their treatment effects. AUTOC quantifies the incremental impact a model achieves
by prioritizing the most responsive individuals at different proportions of the treated popula-
tion, relative to random targeting at the same treatment rate. It then integrates performance
across all possible targeting thresholds. A higher AUTOC value indicates stronger ranking

performance.

Profitability. We evaluate profitability by comparing how different treatment models guide
the platform’s decision on which customers should receive an offer. Specifically, we consider
the targeting policy 7z, under which the platform targets only those customers whose predicted
incremental profitability for their partners, m - 7(Zy, Xj,;) (Where m denotes the partner’s gross
margin) exceeds the cost ¢;, of offer k T2 (L, X)) = 1m - T(Zy, Xpi) > )] ﬂ

We then estimate the expected profit on the holdout set under this policy using the inverse

probability weighted (IPW) policy value estimator (Yoganarasimhan et al.2023):

1 i o 1 [ Wi = 72(Zi, X, )]

Vims) = = _
2521 Nk k=1 i=1 P[kalk = W?(Zk” Xkﬂk)]

[m Vi, — 77 (L, Xiiy) - Ck] 5

where P [W,“k = 77(Zy, X;“k)} denotes the estimated propensity score that the observed treat-

ment assignment in the experiment coincides with the assignment prescribed by [

8Since the dataset does not report either the gross margin of the promoted item or the precise cost of each campaign, we approximate
margin m by adopting the average gross margin of household products in the United States (51.32%; Damodaran|(2025)). Regarding the cost
of each campaign, we define the cost per customer, cy, as the total number of points awarded multiplied by 0.001, since 1,000 reward points are
approximately equivalent to $1.0 in value for consumers. This cost estimate assumes that brand clients bear the full promotion cost, consistent
with the platform’s current business practice.

“While this decision rule primarily aligns with the objectives of the platform’s partners, it is also critical for the platform itself. Part-
ners choose to collaborate with the platform because it demonstrates that its promotional campaigns effectively drive incremental benefits.
Therefore, targeting decisions that maximize partners’ profitability also strengthen the platform’s value proposition and long-term business
success.

10Since all experiments are randomized controlled trials, we follow |Yoganarasimhan et al.|(2023) and use the empirical proportion of cases
in which the actual treatment assignment coincides with the policy assignment as the propensity score.
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To protect the platform’s confidentiality, we normalize the profit values of all methods by
dividing them by the profit achieved under the uniform treatment policy, which is the norm
for rolling out offers in industry and used frequently as benchmark in research (e.g., Yoga-
narasimhan et al.|2023| Simester et al.2020): extending an offer to all customers if its average
incremental profit (i.e., the ATE on spending multiplied by m) exceeds its cost (i.e., ¢;). Under
this normalization, a profit measure greater than 1 indicates that a given targeting policy im-
proves the profitability, while the deviation from 1 reflects the difference in profit relative to the

standard uniform treatment policy.

6 Empirical Performance

We evaluate both the internal and external validity of the proposed DRL-based CIF model us-
ing two managerially relevant scenarios. The first assesses internal validity by testing whether
the model can accurately identify which customers should receive an offer that has already
been tested, using data drawn from the same distribution as past experiments. The second
examines external validity by evaluating the model’s ability to recommend which customers
should receive offers that have not been tested before, applied to customer populations whose

covariate distributions may differ from those in the past experimental data.

6.1 Targeting for Tested Offers

We first consider a standard customer targeting setting, where firms aim to decide which cus-
tomers should receive an offer that has already been tested on customers drawn from the same
covariate distribution. This problem is central to much of the targeting literature (e.g.,|Ascarza
2018, |Simester et al.2020, Zhang and Misra 2025, Yoganarasimhan et al.[2023| |Hitsch et al.|2023],
Huang and Ascarza 2024), where the goal is to allocate limited marketing resources efficiently

by identifying customers with the highest incremental response to an intervention.

Evaluation Procedure. We implement a bootstrap sample-splitting scheme, similar to the ap-

proach in |Ascarzal (2018) and Hitsch et al.| (2023), to evaluate model performance. Specifically,
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for each of the 362 offers, we generate B = 20 random splits of the data into training sets (70%)
and test sets (30%). For each split b, we train a CATE model 7 on the training set and evaluate
its performance on the corresponding test set using RMSE(7(*)) and AUTOC(7). Repeating
this process B times allows us to compute bootstrap means and standard deviations for the
key performance metrics. This sample-splitting procedure mirrors the way firms make target-
ing decisions in practice: targeting rules are developed from past experimental data (training)
and then applied to a new pool of customers (test). In this respect, the scheme offers a realistic

assessment of how different models perform in standard targeting settings.

Results. Table[3|reports performance on holdout observations across four modeling approaches.
The first column lists the model specifications. The second column reports the average AUTOC
value across 20 train-holdout splits, with standard deviations in parentheses. The third column
shows the percentage of splits in which the CIF model with our proposed DRL architecture out-
performed each benchmark on AUTOC. The fourth column presents the average normalized
profit across the same splits (standard deviations in parentheses), and the fifth column shows

the percentage of splits where the proposed DRL model outperformed the benchmark on profit.

Table 3: Targeting Performance on Holdout Observations

Model AUTOC % Outperf. Profit % Outperf.
Joint: Proposed DRL 0.47 (0.12) — 1.37(0.11) —
Joint: Standard DNN 0.36 (0.11) 85% 1.16 (0.19) 90%
Joint: Standard DNN w /o Design Features 0.37 (0.09) 100% 1.33 (0.13) 85%
Individual: Standard DNN 0.11 (0.07) 100% 0.96 (0.07) 100%

Note: We report the mean AUTOC and normalized profit across 20 train—-holdout splits. Standard deviations are shown in parentheses. The
third and fifth columns (“% Outperf.”) report the percentage of splits in which the proposed model (first row) outperformed each benchmark
in AUTOC and normalized profit, respectively. The results demonstrate the effectiveness of DNN-based models. For the complete set of
results from alternative prediction approaches, see

First, all joint models (Rows 1-3) outperform the individual CATE model (Row 4), both in
terms of AUTOC and profits, highlighting the value of synergizing information across experi-
ments. Importantly, the proposed DRL model (Row 1) increases profitability by about 37% rel-

ative to the uniform treatment policy, whereas the individual model (Row 4) reduces profits by
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roughly 4%. This demonstrates that synthesizing past experiments enables substantially more
effective targeting of marketing interventions. Second, the proposed DRL architecture (Row
1) outperforms both standard DNN benchmarks (Rows 2 and 3) across AUTOC and profit.
Interestingly, the standard DNN without design features (Row 3) performs better than the ver-
sion that includes them (Row 2). This result underscores that incorporating high-dimensional
design features into a complex DNN without proper structural regularization can reduce per-
formance, whereas a carefully designed architecture can translate rich inputs into meaningful

improvements.

6.2 Targeting for Untested Offers

Next, we consider a setting in which the platform seeks to target a new offer that has not
been previously tested. This scenario is particularly relevant in practice, as firms often wish to
introduce new interventions that do not have existing experimental results, while still limiting

them to customers who are most likely to generate incremental profit.

Evaluation Procedure. To evaluate the ability of the proposed method to predict treatment
effects for new offers, we implement the following bootstrap procedure. In each replication,
we randomly divide the 362 experiments into 181 training experiments and 181 holdout exper-
iments. The training experiments are used to construct both the proposed model and the other
two joint CIF models. For each holdout experiment, we further split the data into two subsets
using a 70%-30% partition. The larger (70%) subset is used to construct an individual CATE
model, mimicking the standard practice in which the company directly tests a new promotion
and builds a CATE model from it. The remaining 30% of the data is reserved for evaluating
the performance of both the individual CATE models and the joint models. We repeat this pro-
cedure across 20 random splits and report the summary statistics of the resulting performance
metrics. This setup allows us to directly compare the performance of our proposed approach

with that of the conventional “test-and-optimize” strategy for new offers, in which firms first
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Table 4: Targeting Performance on Holdout Offers

Model AUTOC % Outperf. Profit % Outperf.
Joint: Proposed DRL 0.47 (0.14) — 1.19 (0.08) —
Joint: Standard DNN 0.21 (0.13) 100% 0.97 (0.06) 100%
Joint: Standard DNN w /o Design Features 0.37 (0.11) 75% 1.11 (0.09) 90%
Individual: Standard DNN 0.02 (0.08) 100% 0.85 (0.03) 100%

Note: We report the mean AUTOC and normalized profit across 20 train-holdout offer splits. Standard deviations are shown in parentheses.
The third and fifth columns (“% Outperf.”) report the percentage of splits in which the proposed model (first row) outperformed each
benchmark in AUTOC and normalized profit, respectively. The results demonstrate the effectiveness of DNN-based models. For the complete

set of results from alternative prediction approaches, see[Web Appendix F.1

conduct experiments on the focal offers and then estimate a separate CATE model from each

experiment to guide targeting decisions.

Results. Table 4 summarizes the model performance when predicting treatment effects for
new offers that were not used in training. Similar to the earlier findings, the joint models
(Rows 1-3) continue to outperform the individually estimated CATE models (Row 4). The pro-
posed joint DRL model (Row 1) improves profitability by 19% relative to the uniform treatment
benchmark, whereas the individual model leads to a profit loss of about 15%. In addition, the
DRL architecture (Row 1) again surpasses the standard DNN benchmark (Row 2) across both
evaluation metrics. Interestingly, omitting design features (Row 3) leads to better performance
than including them without sufficient regularization (Row 2), suggesting that adding more
input variables can actually harm generalization when the model architecture is not properly
structured. Collectively, these results reinforce our key arguments: (i) synergizing information
across experiments yields more robust targeting models, and (ii) architectural design choices

play an important role in targeting performance for new offers.

6.3 Robustness Checks for Alternative Model Classes

In|Web Appendix F, we conduct robustness checks using alternative second-stage models, in-

cluding XGBoost and Elastic Net, to demonstrate that the proposed two-stage CIF estimation

framework outperforms the conventional approach of estimating separate CATE models for
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each experiment. Overall, we find that the XGBoost-based CIF model also significantly outper-
forms the individual CATE modeling approach, though its performance is slightly below that
of the proposed DRL architecture. By contrast, the Elastic Net models deliver limited targeting
value regardless of whether experiments are synergized or modeled individually, suggesting
that nonlinear models are essential for capturing treatment effect heterogeneity.

In addition to the proposed two-stage estimation framework, we further examine in [Web]
whether the idea of synergizing information across experiments can be extended
to other treatment effect estimation approaches, such as T-learners (Kiinzel et al.2019). Specif-
ically, we construct two spending prediction models (one for the treatment group and one for
the control group) using data pooled across all experiments, and compute the predicted treat-
ment effect as the difference between the two predictions. We then compare the performance
of this joint T-learner with that of conventional T-learners estimated separately for each exper-
iment. Overall, we find that the joint T-learner also significantly outperforms the individual
CATE models, regardless of the model classes used for spending models. Taken together, the
findings convey a clear and promising message: synergizing past experiments creates substan-
tial value. In practice, firms can implement our two-stage framework—or alternative methods
for integrating experimental data—using standard off-the-shelf models and empirically evalu-

ate which approach performs best in their specific context.

7 Designing Promotional Offers Using the CIF Model

So far, we have demonstrated that the proposed DRL-based CIF model effectively matches
offers to customers with high treatment effects, thereby maximizing incremental profit. In this
section, we extend the analysis to demonstrate how the model can also inform the design of
new promotional offers.

Figure [ reports the variable importance from the DRL-based CIF model trained on 362
experiments. Importance is quantified by the mean absolute SHAP values |[Lundberg and Lee

(2017), which capture the average magnitude of each variable’s contribution to shifting pre-
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dictions away from the overall mean. Higher values indicate that a variable exerts a stronger
influence on predicted treatment effects. Panel (a) shows that offer design features, such as
whether the promotion required customers to spend enough on the promoted items, the re-
ward points given to customers, and minimum spending requirements, are particularly influ-
ential in shaping treatment effects. Panel (b) highlights that customer purchase behavior with
respect to the promoted item —such as prior receipt counts, quantity per order, and average
order value —plays a critical role among covariates. Together, these insights indicate that the
platform can enhance campaign effectiveness by calibrating offer structures (e.g., rewards and
spending thresholds) and by prioritizing interventions that align with customers” past pur-
chase intensity with respect to the promoted items in an offer.

Figure 4: Variable Importance Plot of Top 10 Design Features and Customer Covariates

(a) Design Features (b) Customer Covariates
1s Dollar Promotion” | Promoted Item: Receipt Count _
Points Aévakr)d _ Promoted Item: Quantity per Order _
aby I
Minimum Required Spending ||| N | | AN Promoted ltem: AOV _
Bulk Purchase | NN Receipt Count _
puration | N Promoted Item: Past 7 Days? _
Tactic: New Buyer? - Purchased Beer, Wine & Spirits -
Tactic: Volume Driver -
Beer or Cider - Purchased Bath & Body -
Minimum Required Quantity - Items per Order -
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Note. The mean absolute SHAP value measures how much each variable contributes to shifting model predictions away from the overall
mean. The higher the value, the greater the variable’s overall influence on the model’s predictions.

Next, we demonstrate how the company can use the proposed model to better calibrate
promotional offers for different customer types. For simplicity, we focus on two customer
groups defined by whether they had uploaded a receipt related to the promoted item during
the 90 days prior to the experiment, as this is the most influential covariate in the model’s
predictions (Figure[4). We examine two key design features of the offers: the number of reward
points provided (see Figure 5) and the spending required on the promoted items to claim the
reward (see Figure [6). For each of these features, we evaluate the predicted treatment effects in

terms of both customer spending and profits.
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Figure 5: Partial Dependence Plot of Reward Points for Two Customer Types

(a) Who Had Uploaded Offer-Related Receipts (b) Who Had Not Uploaded Offer-Related Receipts
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Note. Each line represents the predicted treatment effect from the model, averaged across all customers who either had (Panel (a)) or had not
(Panel (b)) uploaded receipts related to the promoted item. For each panel, we vary the reward points while holding all other design features
constant to isolate their marginal effect. The shaded areas represent two standard deviations across customers, reflecting the variability in
predicted treatment effects.

Figure 5| presents partial dependence plots (PDPs) (Friedman|2001) of reward points for
the two customer types. A PDP isolates the marginal effect of a focal variable on the model’s
predictions by (i) varying the value of that variable across all observations, and then (ii) av-
eraging the resulting predictions, thereby illustrating how predictions change with the focal
variable while holding all others constant. Panel (a) focuses on customers who had previously
uploaded receipts for the promoted items. For this group, incremental spending rises steadily
and peaks around 2,500 points, while profit peaks earlier at about 1,500 points before declin-
ing. The predicted profit effect becomes negative after 2,500 reward points, indicating that
incremental spending may no longer justify the cost once the reward level is too high.

Panel (b) presents results for customers without prior receipts for the promoted items. Their
incremental spending peaks around 1,500 points, while the profit-maximizing reward level is
approximately 1,000 points, with profits turning negative beyond roughly 1,750 points. The
magnitude of profit gains for this segment is also substantially smaller than that for prior
buyers. These findings highlight the importance of segment-specific calibration: for existing
buyers, offering around 1,500 points maximizes profitability, whereas for non-buyers, capping

rewards at 1,000 points yields better returns.
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Figure 6: Partial Dependence Plot of Minimum Required Spending for Two Customer Types

(a) Who Had Uploaded Offer-Related Receipts (b) Who Had Not Uploaded Offer-Related Receipts
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Note. Each line represents the predicted treatment effect from the model, averaged across all customers who either had (Panel (a)) or had not
(Panel (b)) uploaded receipts related to the promoted item. For each panel, we vary the munimum required spending while holding all other
design features constant to isolate their marginal effect. The shaded areas represent two standard deviations across customers, reflecting the
variability in predicted treatment effects.

Figure [f] presents the PDP of the minimum required spending threshold for the two cus-
tomer segments. Panel (a) shows that for customers who had uploaded offer-related receipts,
the spending effect follows an inverse-U shape: both predicted spending and profit increase as
the threshold rises, peaking around $20, and then decline at higher levels. This suggests that
moderate thresholds can meaningfully increase both spending and profit among engaged cus-
tomers, whereas overly high requirements reduce customers” willingness to pursue the offer
and thereby diminish the treatment effect.

By contrast, Panel (b) shows that for customers who had not uploaded offer-related re-
ceipts, both predicted spending and profit decline almost linearly as the threshold increases.
Raising the spending requirement appears to always deter participation, resulting in lower
treatment effects. These results suggest that setting moderate spending thresholds is profitable
for existing buyers, while low thresholds are preferable for less engaged customers to avoid

discouraging participation

Beyond the analyses using standard model interpretation tools,(Web Appendix Glillustrates

how the learned representations from the proposed model uncover insights for promotion de-

U Note that the treatment effect on profit in Panel (b) is negative because the average reward points across offers is 2,540 points, which
aligns with the results shown in FigureE] (b).
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sign. The offer-level analyses show that representations are largely driven by key incentive
features and that certain product categories appear close to one another in the representation
space. This pattern suggests that when designing promotions, firms should focus on incen-
tive structure and consider cross-category similarities when transferring or adapting success-
ful promotion configurations. On the other hand, customer segmentation based on the learned
representations distinguishes customers by their baseline propensity to purchase promoted
products, implying that customized promotions should account not only for overall platform

engagement but also for customers” own preference toward promoted items.

8 Generalizability: Evaluating Attribute Shifts and Concept Shifts

In previous sections, we presented the empirical performance of our model and demonstrated
its applications in targeting and new offer design. We now evaluate the robustness of the CIF
model when applying it to new offers and customers. Specifically, we examine the two types
of data shifts discussed in Section attribute shift and concept shift. For attribute shift, we
examine how differences in design features of new offers or differences in customer covariate
distributions relative to prior experiments affect the performance of the proposed CIF model.
For concept shift, we test whether variation in customer responsiveness to an offer can be ex-

plained by the timing of the offer deployment.

8.1 Evaluating Attribute Shifts

We first examine how attribute shift affects the performance of the proposed model. Building
on the estimation approach in Section 6.2} we randomly hold out 181 offers for evaluation. For
each holdout offer, we compute the distance between its design and customer features and
those in the training set, and analyze how this distance relates to the model’s performance.
Specifically, we quantify the difference in design features between a holdout offer i and the
training offers k = 1, - - - , 181 by computing the average squared Euclidian distance of their differ-
ences: DZ = L. 3% ||Z), — Zy||3. To quantify differences in customer covariates, we randomly

sample 100,000 observations from the training data and compare them with the customer co-
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variates in each holdout experiment. We then compute the average linkage, defined as the mean
pairwise distance between each holdout experiment and the 181 training experiments. For-
mally, let Xy, ; denote the covariate vector of training observation ¢ (with 7 = 1,---,100000)
and X, ; denote the covariate vector of customer j in the holdout experiment h. The average
linkage distance is then defined as D} = {55505~ 100000 Zjvzhl | Xk, i — X1 |3, where N, is the
number of observations in the holdout experiment.

Next, we examine how the average distances in design features and customer covariates
relate to the normalized profit metric defined in Section We perform 20 train-holdout offer
splits, yielding a total of 181 x 20 = 3, 620 data points. Each data point corresponds to a holdout

offer, characterized by its average distances from the training offers in both the design and

customer spaces, as well as its associated normalized profit under the DRL-based CIF model.

Figure 7: Average Distance in Design Features, Customer Covariates, and Normalized Profit
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Note. Each data point represents a holdout offer and its related metrics for a given training set in one split, characterized by its distances from
the training offers in terms of design features and customer covariates, as well as its associated normalized profit. The blue line shows the
kernel-smoothed estimate of the regression between average distance and the normalized profit.

Figure [7]illustrates how the average distance in design features (Panel (a)) and the average
linkage in customer covariates (Panel (b)) relate to normalized profit. Panel (a) reveals a clear
pattern: normalized profit decreases as the design features of new offers diverge further from
those tested in past experiments. Nevertheless, even for offers with distances greater than

200 (representing 11% of all data points), normalized profit remains above 1, indicating that
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applying the proposed model still performs at least as well as the baseline strategy of launching
an offer whenever its average incremental profit is positive. Panel (b), by contrast, shows that
variations in customer covariate distributions between past experiments and new settings do
not meaningfully affect profitability. This result suggests that the CIF model generalizes well
across customer populations, even when covariate distributions shift.

Table 5| reports the results from regressing normalized profit on average distance in design
features and average linkage in customer covariates, using the full set of 3,620 data points (181
offers and 20 splits). The results show a significantly negative coefficient for design-feature
distance, while the coefficient on customer covariates is indistinguishable from zero. These
tindings reinforce that similarity in design features is a key determinant of generalization per-

formance, whereas shifts in customer covariates are comparatively less critical in our context.

Table 5: Regression Evaluation of Attribute Shifts

Dependent variable:

Normalized Profit

Average Distance in Design Features —0.002 (0.0001)
Average Linkage in Customer Covariates 0.0001 (0.00006)
Constant 1.430 (0.018)
Observations 3,620
Adjusted R? 0.097

F Statistic 88.768 (df = 2; 3617)

8.2 Evaluating Concept Shift

Another important concern when applying models trained on historical experimental data to
future marketing decisions is the possibility of concept shift: changes over time in the underlying
relationship between offer design features, customer covariates, and customer responsiveness
to treatment. When such shifts occur, models that once performed well may fail to generalize
to future offers and customers.

To assess whether concept shift is a concern in our application, we develop an empirical pro-

cedure grounded in the double machine learning framework (e.g., Chernozhukov et al. 2018,
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Ellickson et al. 2023), which enables managers to detect such shifts using their own experi-
mental data. Specifically, we test whether variation in treatment effects can be systematically
attributed to the timing of the intervention, beyond what is explained by offer design features

and customer covariates, for all 362 offers.

1. Compute DR scores: For each observation 7 in experiment k, compute the DR score 7 ;.

2. Partial out variations driven by design features and covariates: We remove variations 7y ;

that can be explained by explained by Z; and X}, ;. Specifically, we compute the residual:

Ei = Thi — T (L, Xpi),
where 7(Zj, X},;) is the predicted treatment effect obtained using the DRL-based CIF model.
This step isolates the portion of treatment effect variation that is not explained by observed

offer features and customer covariates, which may be correlated with the offer start time.

3. Test for temporal variation in treatment effects: In the final step, we assess whether the
residual variation in treatment effects, after controlling for Z; and X} ;, can be systemati-
cally explained by the offer start time 7. Specifically, we test for a statistically significant
relationship between £7 ; and the offer start time 7},. A significant association would indicate

that the treatment effect function varies over time, providing evidence of concept shift.

Applying these steps to our data, we conduct both a visual inspection and a regression-
based test to evaluate whether offer start time explains additional variation in treatment effects.
Figure[8|presents a scatter plot of offer start week (T}) against the residual treatment effects (£7 ;)
for a random sample of 100,000 observations drawn from the full dataset of 30,701,442 obser-
vations. The absence of any discernible temporal pattern indicates that the residual treatment
effects are unrelated to offer timing, suggesting that treatment effects remained stable over the
sampling period and that concept shift is unlikely to be a concern in our context.

Beyond the visual evidence, we formally test for temporal variation in treatment effects by
regressing the residual treatment effects, &7 ;, on the offer start week (7},) and its square (77),

using the full sample of 30,701,442 observations. The estimation results in Table [6|suggest that
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Figure 8: Relationship between Offer Start Week and Residual Treatment Effects
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Note. Each point represents an observation randomly drawn from the full dataset of 30,701,442 observations. The x-axis indicates the offer’s
start week (T%), normalized such that week 1 corresponds to the launch of the first offer. The y-axis represents the residual treatment effect
(€7, ;)- The blue line shows the kernel-smoothed regression estimate of the realtionship between residual treatment effects and offer start time.

both coefficients are statistically indistinguishable from zero, and the model explains virtually
none of the variance in residuals (R?* = 0). Taken together with the visual analysis, the results
provide no statistical evidence of a systematic relationship between treatment effects and offer
start time.

Table 6: Regression Results of Residual Treatment Effects on Offer Start Week

Dependent variable:

Ehi
Ty 0.011 (0.029)
T? —0.001 (0.001)
Constant 0.029 (0.113)
Observations 30,701,442
Adjusted R? —0.000
F Statistic 0.891 (df = 2; 30701439)

9 Conclusion and Future Directions

We propose a two-stage causal machine learning framework that enables firms to personal-
ize interventions by leveraging data from past randomized experiments. By modeling treat-
ment effects as a joint function of intervention design features and customer covariates, the

framework synergizes information across different experiments, overcoming the limitations of
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analyzing each experiment in isolation. This approach not only delivers substantial gains in
targeting accuracy but also demonstrates strong generalizability to untested interventions.

Empirical evidence from 362 promotion experiments involving more than seven million
customers demonstrates that our proposed framework predicts treatment effects more accu-
rately than the conventional approach of estimating a separate model for each experiment.
Moreover, when extrapolating to previously untested promotional offers, the framework out-
performs traditional CATE models trained directly on experimental data from those same of-
fers. Together, these results indicate that firms can transform their existing archive of exper-
iments into a valuable resource for scalable personalization. Finally, we show that balancing
flexibility with complexity is critical for model performance, and that in deep learning applica-
tions this balance can be effectively achieved through careful architecture design.

While our research provides a valuable framework for personalized marketing interven-
tions, it also has several limitations that point to promising avenues for future work. A key
practical challenge lies in managing both attribute shift and concept shift. Although our em-
pirical evidence suggests that these shifts are not a major concern in our setting, they may arise
in other contexts — for example, when a firm is in a rapid growth phase and the composition of
its customer base changes substantially. To mitigate attribute shift, active learning techniques
(e.g.,Jesson et al.2021, Chen et al.|2024) could be extended to guide new data collection toward
offers with high uncertainty in their predicted CATEs or in their estimated profit-maximizing
levels. To address concept shift, fine-tuning methods from transfer learning (e.g.,/Alshalali and
Josyula 2018) could be employed to incrementally update the model using small-scale experi-
ments conducted over time. Future research could integrate these strategies into a continuous
experimentation framework that explicitly accounts for both attribute and concept shifts.

Second, although we employ standard post-hoc explanation techniques to demonstrate
how managers can use the proposed model to inform promotional design, more granular cus-
tomization could be achieved by directly personalizing intervention design. Prior research

often frames this problem as one of mathematical optimization (e.g., |/Ansari and Mela| 2003,
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Zhang and Krishnamurthi|2004). In our context, one could query the estimated CIF model
to identify the set of design features that maximizes predicted profit for a given customer seg-
ment. Because the decision space is high-dimensional, this optimization could be implemented
using approaches such as Bayesian optimization (Frazier||2018) or optimal transport (Zhang
and Misra|2025). Future research could integrate these optimization procedures with our two-
stage CIF framework to algorithmically generate profit-maximizing offer designs tailored to
specific customer segments.

Third, while we demonstrate the benefits of synergizing experiments, extending this ap-
proach to other marketing domains could yield valuable insights. For instance, a retailer might
integrate results from multiple in-store coupon experiments to inform decisions about which
customers should receive incentives (Gabel et al.|2025); a hotel brand could synthesize evi-
dence from various compliance-promotion campaigns (Daljord et al.|[2023) to refine its loyalty
program; and an advertising platform could leverage findings from prior ad campaign exper-
iments (Rafieian|2023) to improve targeting for new campaigns. Evaluating the effectiveness
of our framework across such diverse contexts would help clarify the conditions under which
personalized marketing strategies benefit most from integrating historical experimentation.

Finally, our analysis focuses on experiments that share a common set of covariates and a sin-
gle outcome of interest. In practice, however, experiments may differ in their intervention fea-
tures, available covariates, or outcome variables. For example, one experiment might use de-
mographic and purchase history data to estimate treatment effects on promotion redemption,
while another might rely on browsing behavior data to predict incremental website visits from
email campaigns. Jointly modeling such heterogeneous experiments could still be valuable but
would require additional assumptions and methodological innovations. For cases with differ-
ing covariate sets, heterogeneous domain adaptation methods (e.g., [Dai et al. 2008, Pan et al.
2010) could be extended to the second-stage model architecture to reconcile feature-space dif-
ferences. For cases with distinct outcome variables, multi-outcome regression approaches (e.g.,

Richardson et al.|2015) could enable joint learning across experiments. Establishing the theoret-
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ical foundations and practical estimation strategies for these more complex settings represents

an important avenue for future research.
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Web Appendix

Web Appendix A Proofs of Identification and Unbiasedness of DR Score

Web Appendix A.1 Proof for Theoremﬂ

We begin by presenting the proof of identification of the CIF function under the five conditions

stated in Assumption[I|to Assumption 5| For reference, recall Theorem

Theorem 1] (CIF Identification) Under Assumption[I|to Assumption[5 for any design feature
Z < Z that was tested in at least one experiment (i.e., there exists k¥ € {1,---, K} such that
Z;, = 7Z) and any individual with covariates X € X, the CIF defined in Equation (1) is point-
wise identified such that 7(Zy, X ;) = E[Yi:|[Wi: = 1, Xii] — E[Yii| Wi = 0, Xp4].

Proof. By the first three assumptions (overlap, unconfoundedness, and no interference), we

have
EYiil Wi = 1, Xpi] = E[Y5e: Wk = 1)| Xl

E[Yei|\Wki = 0,Xg;] = E[Yii (Wi = 0)|X4]

for all the past experiments. Then, by the ignorability of unobserved design features and sta-

bility, we have
ElYi(Wii = 1|2y, Xis] = E[Yii(Zr) | Xk i),

E[Ye:(Wk; = 0)|Zg, Xii] = E[Y.:(0)| X ],

Then, by the stability assumption, we have

E[Yyi(Zk) [ X i] = E[Y (Z) [ X4l

E[Y5i(0)[ Xy, = E[Y (0)[ X,

Combining the above results, we prove the identification results. m

Web Appendix A.2 Proof for Corollarym

Corollary (1| (Unbiased Score) Let y.,(x) = E[Y;;|Wi; = w,X); = x| be the conditional

expected outcome for offer £, and let 7 (x) = P[W,.; = 1|X,; = x| denote the propensity score
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of being treated in experiment k. Then, under Assumption [1to Assumption 5, the DR score is
an unbiased signal for the CIF defined in (I)):

T(Zg, Xpei) = E | pe1 Xk i) — pro(Xii) + ﬁk(v)‘(/:l)_[ﬁsr):&ll)] [Yk,z’ = Pk, Wi s (Xm)} ‘ Zy, sz] .
Proof. From the proof of Theorem |1, we have
,Uk,l(Xk,i> = E[Ykz(zk)|xkz] and ,Uk,O(Xk,i) = E[Ym(o)\xm]
As a result, the target estimand can be written as:
(2, Xei) = pirea (Xiei) = a0 (Xii)- (App-1)
Next, by definition of the propensity score 7 (X} ;), we have

= Wk(XkJ‘).

These two results imply that

[ Wk,i - Wk(Xm)

Tk (Xk,z)[l — 7Tk<Xk,z)] [Yk,z = MWy (Xk;,l)} ' Xk:,ia Zk:|

B Wi — mie(Xiei)
= Mxk,»u (X))

’ Xy Zk:| ‘E [Yk,i - uka(Xm)‘ X Zk] (App-2)
= 0.

The first equation holds by the unconfoundedness assumption (such that W, ; is independent

of Y;.; given X, ;, and the second equation hold by the above results. Finally, combining

and (App-2) proves Corollary 1} m
Note that Equation also demonstrates the double robustness property: if either

T (X,i) OF piew, ,(X,) is unbiased for its true counterpart, the estimator remains unbiased.
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This implies that in randomized controlled experiments, where the true propensity score is

known, the DR score always provides an unbiased signal for the true CIE.

Web Appendix B Theoretical Guarantees

In this appendix, we provide statistical guarantees for the proposed two-stage CIF estimation
framework. Specifically, we build on existing theory in multitask learning — particularly [Iripu-
raneni et al.| (2020) —to show that as the number of experiments increases, the model achieves

mean-squared consistent estimation of the treatment effects with high probability.

Web Appendix B.1 Data Generating Procedure

We begin by formalizing the CIF prediction problem. Specifically, we assume that the true CIF
can be decomposed into two components: (i) a representation function that transforms raw in-
tervention features and customer covariates into a lower-dimensional representation relevant
for treatment effects, and (ii) a mapping function that links this representation to the corre-

sponding treatment effect. Formally, this decomposition can be expressed as:

Assumption App-1 (CIF Function) Assume that the true CIF function defined in Equation (1) can
be written as

7(Z,X) = f*oh*(Z,X),

where h* : Z x X — R¥ denotes the representation function and f* : R® — [-D, D], D < oo is the

mapping function. The symbol o denotes function composition; that is, f* o h*(Z,X) = f*(h*(Z,X)).

Note that this assumption does not require the existence of low-dimensional representations
that fully capture treatment-relevant information. If all information in the original interven-
tion features and customer covariates is relevant for determining treatment effects, then the
representation function simply reduces to the identity mapping, i.e., h*(Z, Xy ;) = (Zg, Xj,).
Next, we introduce additional assumptions concerning the sampling process underlying
the experimental data. Beyond Assumption [I{to Assumption 5|, we impose the following as-

sumption on the firm’s experimentation protocol:
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Assumption App-2 (Experiment Protocol) We assume the company follows the protocol below

when conducting experiments:

1. Each offer with design features Z € Z has a non-zero probability of being selected for testing in an

experiment.

2. For simplicity and without loss of generality, we assume that each past experiment involves the

same number of observations, denoted by N > 0.

Note that Assumption[App-2|1 requires only that the firm’s experimentation protocol allow for
exploration across the entire design feature space. We do not assume that interventions are
sampled uniformly from the decision space; firms may adaptively select interventions based
on prior knowledge or past outcomes, so long as the protocol ensures sufficient coverage of the

design space. Assumption[App-2|2 is introduced solely to simplify notation.

Web Appendix B.2 Assumptions on Model Classes

The main objective of our two-stage CIF estimation framework is learning to predict the DR

score 7;; through the minimization of a loss function /, i.e.,

e 1 &

(fh) = argmin 27 ];ché (f o h(Z, Xys), Fii) (App-3)
Here, # and F denote the classes of representation and prediction models employed in the
second-stage estimation (e.g., deep neural networks). Note that, the second-stage model does
not require constructing an explicit representation function h. For instance, when a standard
machine learning model is used to predict the DR score directly from the raw inputs, the rep-

resentation function can be interpreted as the identity mapping.
In our application, we focus on the squared loss, defined as ¢(a, b) = (a—b)?. In addition, we

impose the following standard regularity conditions on the CATE model and the loss function.
Assumption App-3 (Assumption 1 in Tripuraneni et al. (2020))

1. Every function within F is L-Lipschitz w.r.t. the norm || - |2, i.e., | f(a) — f(a')||2 < L|ja—a’||2
forall f € Fanda,a’ € dom(f).
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2. The loss function ¢ is nonnegative and B-bounded, i.e., 0 < {(y',y) < B forany y,y' € R.

The first condition requires that the class of prediction models used in the second-stage esti-
mation be Lipschitz continuous. This property can be ensured by imposing suitable structural
constraints on the chosen model. For neural networks, several strategies have been proposed
in the literature, including using Lipschitz-continuous activation functions such as sigmoid,
hyperbolic tangent, or ReLU (Szegedy et al.|2013); applying regularization techniques (e.g.,
Drucker and Le Cun|1992, Gulrajani et al. 2017); and imposing constraints on network weights
(e.g., Cisse et al.| 2017, [Yoshida and Miyato|2017) or gradients (e.g., Virmaux and Scaman|2018,
Anil et al.[2019) during training.

The second condition requires that the loss function be bounded. This requirement is gen-
erally not restrictive, as the prediction target, the DR score, and the true CIF function are finite
whenever the outcome of interest is finite. For most model classes that represent predictions
as weighted averages of outcomes, such as tree-based methods, nearest-neighbor estimators,
or kernel regressions (Huang and Ascarza 2024), the boundedness condition is automatically
satisfied whenever the outcome variable is finite. If concerns arise about unbounded predic-
tions in neural network models, this can be addressed by employing bounded activation func-
tions (e.g., sigmoid or tanh) or by directly constraining network weights (e.g., Cisse et al.[|2017,

Yoshida and Miyato 2017).

Web Appendix B.3 Prediction Error Bound for Two-stage CIF Estimation

We now provide the error-bound for our two-stage framework. We first define the expected
prediction error as the average mean squared error between the predictions of a model and the

true CIF function:

1 K N

Error (f,h — Z Z C(f oh(Zy, Xgi), f*oh™(Zy, X44)) | (App-4)

k=1 =1

where the expectation is taken over both the experimental protocol for past experiments (i.e.,
the distribution of Z;) and the data-generating process within each experiment (i.e., the distri-

bution of (X, Wi, Yii) )-
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In standard supervised learning settings where the prediction target is directly observed,
such as the supervised multi-task learning problem in (Tripuraneni et al.[2020), it can be shown
that the gap between the empirical prediction error and the expected prediction error converges
to zero with high probability as the sample size grows. Consequently, minimizing the empirical
prediction error is asymptotically equivalent to minimizing the true expected error. In contrast,
in the context of treatment effect prediction, the true treatment effect is not directly observed,
and thus we can only minimize the empirical loss with respect to the DR score rather than the
empirical discrepancy between predictions and the true treatment effect. This motivates the
need to formally establish the equivalance between the expected loss computed using the DR
score and the true expected prediction error with respect to the underlying treatment effect. We
can then adapt the proof techniques from Tripuraneni et al. (2020) to establish a bound on the
gap between the empirical loss evaluated with respect to the DR score and its corresponding
expected loss.

The following lemma establishes the connection between the expected loss with respect to
the DR score and the loss with respect to the true CIF. Specifically, if the DR score 7 ; is an
unbiased proxy for the true treatment effect, then the difference between the expected loss of
the predicted CIF relative to the DR score and the expected loss of the true CIF relative to the
DR score is exactly the true expected prediction error of the predicted CIF relative to the true

CIE

Lemma App-1 For a given representation function h and a prediction model f, the difference in mean

squared loss between f o h and the DR scores 7y, ;, compared to that of the oracle f* o h*, is defined as:

K N

L(f b, f*,h*) ﬁzzy (f o h(Z, X)), i) — £ (f* 0 W*(Ze, X)), 7o)

k=1 i=1

Then, this difference is equivalent to the expected prediction error in Equation (App-4), i.e.,

I(f,h, f*,h*) = Error (f,h).



Proof. We first note that

El(f oh(Zy,Xki) Thi) | Zr, Xii]
= [f o h(Zy, X)) = 2f 0 h(Zpp, X E [Fail Zi, Xii] + E [72,Zi, X ]
= [f o h(Zy, Xy.2)]” — 2f 0 W(Zg, X3 E 71| Z, Xii] + B2 [Fri| Z, Xii] + Var [7i| Zi, Xi]

= [f o h(Zk, Xkyi)]Q — 2f o h(Zk, Xk,l) . f* e} h*<Zk, X]g’z) —+ [f* ©) h*(Zk., XkVZ')]Q + Var [7~'ka|2]€, Xk,i] .

for given f and h since 7 ; is unbiased. Similarly, we have

E(f*oh*(Zi, Xk;), Thi) | Ly Xii]
= [f* o h*(Zy, le)]Q — 2f* o W*(Zy, Xp.i)E [Fr.s| Z, Xii) + E? [Fri| Zi, Xy + Var [7| Zi, X
= [f* o h*(Zy, Xk,i)]2 —2[f* o h*(Zy, Xk,i)]2 + [f* o h*(Zy, X;m-)]Q + Var 7| Z, Xy.i]
= Var [Ty |Zy, Xk -

Combining these two observations together, we have

E[l(foh(Zy, Xk:), ki) —L(f o (Zg, Xii), Tii) | Lk, X i)
= [f oh(Zy, X1.2)]” — 2f o h(Zy, Xy) - f* o h*(Z, Xpi) + [f* 0 W*(Zy, X))
=0(f oh(Zy,Xg,), fFoh*(Zy, X)) .
By taking expectation of the above result over the distribution of Z; and X, ;, we prove the
lemma. =

Next, we apply the proof technique of [Iripuraneni et al. (2020) to bound the gap between
the empirical loss with respect to the DR score and the corresponding expected loss. Before
presenting the formal theorem, we review a key measure of model complexity from statistical
learning theory, namely Gaussian complexity (Bartlett and Mendelson|2002, Maurer et al.|2016),

Tripuraneni et al.|2020). Gaussian complexity provides a standard tool for characterizing the
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richness of a function class—that is, its ability to fit diverse patterns in the data, including

those driven by noise.

Definition App-1 (Gaussian Complexity) For a generic function class Q, comprising functions
a:) = (a(), -+ ,q8(") : RY — RE, and given N observed data points, D = {d,,--- ,dy}, the

empirical Gaussian complexity of the function class is defined as

N B
1 iid
SUD N Z Z Enb Qb(dn)] . Enp ~N(0,1).

Following this, the worst-case Gaussian complexity is defined as &(Q) = arg maxy, @D(Q), and the

population Gaussian complexity is defined as &(Q) = Ep [@D(Q)].

Intuitively, Gaussian complexity measures the extent to which a function class can fit pure
white noise. If the class can closely approximate randomly generated Gaussian noise, it in-
dicates high flexibility and thus greater risk of overfitting. In this sense, Gaussian complex-
ity captures the trade-off between expressive power and generalization: higher values reflect
richer function classes but also signal a greater potential to overfit.

We now formally present an upper bound —adapted from Theorem 1 in Tripuraneni et al.

(2020) — for the expected prediction error of our two-stage estimation framework:

Theorem App-1 (Upper Bound for Prediction Error)  Suppose that the following conditions
hold: (i) the reqularity conditions in Assumption (ii) the data is collected under an experimental
protocol satisfying Assumption and (iii) there exist f* € F and h* € H[[|then, with probability

at least 1 — 6, the prediction error of the model (f,h) obtained from the empirical risk minimization

problem in is bounded as follows:

-~ C — lo 0
Error ( f,h) < e s (K) [Co(H) + C58(F)] +C4 %, (App-5)

( J/

~
Overfitting Potential for the Model Classes

where Cy, Cy,, Cs, and C, are some constants.

1While this assumption may initially appear strong, it is reasonable in the context of deep neural networks. Prior work has established
their universal approximation capability (e.g., (Cybenko|/1989} |[Hornik|1991} |Pinkus|[1999, |Liang and Srikant|2016, |Kidger and Lyons|2020),
demonstrating their effectiveness in approximating a broad range of function classes.
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Proof. First, define the empirical excess loss for f,h is defined as:

K N K N
1 1
L(f.h, f*,h") _ﬁzzg (f o (Zg, X), Thi) mzzg [ oW (Zy, X i), Tri)

k=1 =1 k=1 =1

Let f and h denote the representation and prediction models obtained by solving the empirical

loss minimization problem in Equation (App-3). Then, we have:

L(f,h, f,0%) = L(f,h, f,h*) = L(f*,b*, *, ")

+ L(/,h, f*,b*) = L(f*,b*, [*,b")
=b

+ ?(f*a h*a f*a h*> - ‘C(f*a h*a f*a h*)l

=C

<a-+c.

The inequality holds because b < 0, as fand h are chosen to minimize /3(]/”\, H, f*,h*). Note
that in both a and ¢, the common term E [ﬁ Zszl Zf\il C(f* o h*(Zy, Xy.i), %kz)] cancels out,
leaving only the difference between the empirical and expected loss with respect to the DR
score.

This result bounds the expected prediction error (f,h, f*,h*) by two terms that are directly

related to the empirical loss (terms a and c in the above inequality), for which we can derive

high-probability error bounds using Gaussian complexity.

Next, we bound terms a and c using the standard generalization bounds based on Rademacher
complexity, we obtain the following bounds for a and ¢ with probability at least 1 — ¢:
log(2/9)

a,c< sup |L(f,h, [ 0%) = L(f, h, £, 0%)] < 2Rz x(((F(H))) + 2B ,
feF heH KN
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where F(H) = {(f,h) : f € Fand h € H}, Z,X denotes the empirical data of design features
and customer covariates, and Pz x (¢(F(H))) is the Rademacher complexity of ¢/(F(#)). The
tirst inequality is a direct consequence of the definition of sup. The second inequality lever-
ages the well-established probabilistic upper bound derived using the Rademacher complexity
(Theorem 8 in Bartlett and Mendelson! (2002) and Theorem 4.10 in Wainwright| (2019)).

Next, using Inequality (11) from the Appendix of Tripuraneni et al.| (2020), along with the

fact that Rademacher complexity is bounded by Gaussian complexity — specifically,

Ry (F(H)) < @@Z,Xm»

(see Lemma 4 in Bartlett and Mendelson (2002) and p.97 in Ledoux and Talagrand|(2013)) —we
can bound the Rademacher complexity ¢(F(#)). as follows:

RU(F(H))) <2LR(F(H)) <ALB(F(H)).

Combining the above results together, we can establish the upper bound for the expected pre-

diction error:
log(2/9)
KN

I(f,h, f*,h*) < a+c < AR(UF(H))) + 4B
(App-6)
log(2/9)
KN

< 16L®(F(H)) + 8B

Next, we follow [Iripuraneni et al.| (2020) to further decompose the Gaussian complexity
of the composite model class F(#) into a (weighted) sum of the Gaussian complexities of the
representation class H and the prediction class F. To accomplish this, we draw on the chain
rule presented in Theorem 7 of [Tripuraneni et al.| (2020). However, Tripuraneni et al. (2020)
considers a setting in which a separate prediction model is trained for each task, leading to a
complexity bound of the form & y(F® X (%)), where each task uses N samples independently.
In contrast, our setting involves a shared predictive model trained on a total of KN samples
across all tasks, yielding the quantity &(F(#)). As a result, we modify Theorem 7 in [Tripu-
raneni et al. (2020) accordingly to enable the decomposition of &(F(#)) under this unified

modeling framework.
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Claim. (Modification of Theorem 7 in Tripuraneni et al.| (2020))

G(F(H)) < 7y + 64 [L G(H) + G(F)] log (KN). (App-7)

(KN)?

Proof. Note that the proof is largely the same as Theorem 7 in Tripuraneni et al. (2020), with
the only difference from bounding the coverging number of the composite model class F ().
To see this, first, by definition, the Gaussian complexity of the composite function class F(#)
is given by

G(F(H)) = S0P Z( h)

VEN fn

where Zym) = = S SN grif(W(Zy, X4,)) and gg; ~ N(0,1) are iid. standard normal
random variables.
Following the approach on page 18 of [Iripuraneni et al.| (2020), we can derive a Dudley

entropy integral upper bound on this Gaussian complexity:

D
E| sup Zyw| <A4E sup Zsm) — Zpw) +32/ Vlog N (u, F(H), dy)du,
f(h)EF(H) da(f(h),f'(h'))<k K
where dy(f(h), f'(h")) \/KN Zk 1 Zl L f((Zy, Xy ) — f’(h’(Zk,X;m-)]2 is the empirical /,

norm between two functions, and N (u, F(#), d2) denotes the u-covering number of the com-
posite class F(#) with respect to the metric d;, (see Definition 5.1 in Wainwright| (2019)).

As shown on page 18 of Tripuraneni et al. (2020), the first term is bounded by K Nk.
Therefore, our objective is to adapt the derivation from that proof to obtain a bound on the
covering number of F(#) as an additive combination of the covering numbers of (#, d3) and
(F,ds). Specifically, by applying the final inequality on page 18 of Tripuraneni et al./(2020) with
t = 1— corresponding to our setting with a single unified prediction model —we have:

log N (€1 - L+ ¢e9, F(H),ds) <log N (e1,H,ds) + max log Ny (€9, F, ds) ,

(¢,x)€Range(#)

where L is the Lipschitz constant of the model class .
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Following the same reasoning as on page 19 of [Iripuraneni et al. (2020), we can apply the
Sudakov minoration theorem (Theorem 5.30 in Wainwright (2019)), which provides an upper

bound on each covering number in terms of the corresponding Gaussian complexity:

~ 2 ~ 2
08 N (e H. ) <4 (_ﬂm G<'H>) o N (e ) < 4 <_¢m<f> ) |
1 2

Then, following the derivation on page 19 of Tripuraneni et al. (2020) by taking €; = 57, €2 = &,

and k = we can bound the integrated covering number as follows:

(KN)2 7

(¢,x)€Range(#)

/D¢mywmfma@ﬂmg2vKN{L@%y+ max éuﬂ log (KN) .

Then, substituting every bounds into Inequality and by the definition of the Gaussian

complexity, we have

B(F(H)) < ﬂ(_(w o+ OVE [ G(H) + (ny)gé%e(mg(f)} 1og<KN>)
4D -
~ e+ [L GH) + (ny)lerllggge(}l)g(if)] log (KV)

where Range(H) = J, . Range(h(Z, X)) denotes the set of all possible representations pro-
duced by the representation function class H, given all the observed design features and cus-
tomer covariates in the experiment data. Finally, taking the expectation on both sides of the

above inequality yields the result stated in the claim. m

Finally, combining Inequality and Inequality (App-7), we can prove the theorem:

log(2/9)
KN

Error (f, ﬁ) < (KC]’V) +log(KN) [Co6(H) + C58(F)] +Cy

Overfitting Potential for the Model Classes

J/

with probability at least (1 — 0). =

Theorem shows that the prediction error bound depends on the Gaussian complexity

of (i) the representation function class (#) and (ii) the prediction function class (F). To ensure
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that the estimated CIF function is asymptotically correct with high probability, it is therefore
necessary that the Gaussian complexity of both classes decreases sufficiently fast. This result
also yields an important design implication: prediction models must strike a balance between
expressiveness and complexity. On the one hand, the model class should be sufficiently flexible
to approximate the true function well; on the other hand, its Gaussian complexity must be
controlled to achieve tighter prediction error bounds.

While our proof builds on the framework and techniques of [Iripuraneni et al.|(2020), we in-
troduce two key modifications. First, their framework assumes a standard supervised learning
setting with directly observed prediction targets, whereas our setting relies on a noisy proxy
for the true treatment effect (the DR score). Second, whereas [Tripuraneni et al.|(2020) analyze
a multi-task learning environment in which each task has its own ground-truth function and
separate model, we instead study a single, unified CATE function that generalizes across all
offers. This structural distinction requires adjustments to the Gaussian complexity analysis.
Among these modifications, the first is more consequential, as it establishes the connection be-
tween treatment effect prediction and the broader body of theoretical results on Rademacher
and Gaussian complexity for bounding generalization error. The second modification is more

technical in nature.

Web Appendix B.4 Prediction Error Bound for DNN-based CIF Models

Since our second-stage model primarily relies on deep neural networks (DNNs), we derive the
prediction error bound using existing Gaussian complexity analyses. Following the approach
of [Iripuraneni et al.[(2020), we establish a prediction error bound for the class of deep learning
models represented by depth-d vector-valued neural networks as the second-stage estimator.

Formally, a neural network is specified as:

NN(x) =Wg04(Wg-104-1(--- Wi 01 (x))),

where 01, -+ , 04 represent 1-Lipschitz activation functions that are zero at the origin, such as

the linear and ReLU functions. Here, we define M (j) as the maximum possible value of the

App-13



Frobenius norm for the matrix W}, that is, the square root of the sum of the squares of all

elements in W.

Corollary App-2 (Prediction Error Bound of DNN-based CIF Estimator) Consider the case
when H is the class of dy-layer neural networks with 1-Lipschitz activation functions and w-dimensional
outputs, and F denote a class of neural networks with dy layers, also employing 1-Lipschitz activation

functions. Furthermore, it is assumed that M (j) < oo for all parameter matrices. Then, with probability

at least 1—6, the prediction error of the IRL model (f, ) derived from can be bounded as follows:

~ Cy log(2/9)
pror (7.) < o + 0y 2200,
o, VIREN) T M +C(M)WH?221M]

VEN ! VEN ’

log(K'N)

where Cy, Cy, C3 and Cy(w) are some constants. Note that Cy(w) = O(y/w).

Proof. By Theorem 2 in Golowich et al| (2018), we can bound the sample Rademacher com-

plexity of deep neural networks N A with w-dimensional output and depth d as follows:

QwW ?:1 M(j) (App-8)
VEN ’

RNN) <

where M (j) is the maximum possible value of the Frobenius norm for the weight matrix in the
j-th layer, and r is the dimension of the input variables.

Using the fact that B(NVAN) < 2y/log(KN) RNN) (page 97 in Ledoux and Talagrand
(2013)) together with and taking expectation on the left side, we have

4/log(KN)w+/d + 1 +log(r) [T/_, M(j)
VKN '

BNN) <

As a result, for the function classes H and F specified in the corollary, we have the following

bounds for their Gaussian complexities:

\/log (KN)w
\/KN

\/log (KN)
\/KN

Gz x(H) < ,a5( ) < By/d+1+log(
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Finally, by applying the above bounds of Gaussian complexities on Theorem [App-T} we can

prove the corollary. m

Corollary yields several key insights into the use of DNNs as the second-stage model.
First, it provides a theoretical guarantee that the upper bound of the prediction error for a
DNN-based model converges to zero as the number of experiments grows. Second, it demon-
strates the value of dimensionality reduction in representation learning: the prediction error
bound tightens as the representation width w decreases, provided that a network of dimension
w remains sufficiently expressive to recover the true representation function h*.

Third, the corollary demonstrates the advantages of employing separate network structures
for design and covariate representations. By construction, such architectures impose structural
zeros in the parameter matrices W, —specifically, those parameters linking offer representa-
tions to customer representations—thereby reducing the maximum possible Frobenius norm
of W, relative to a fully connected network of comparable width and depth. This reduction
yields a tighter prediction error bound compared to fully connected architectures that allow
unrestricted interactions between design features and customer covariates. A similar logic
applies when comparing shared-parameter prediction networks with offer-specific prediction
networks, where the former typically attain more favorable error bounds under analogous con-

ditions.

Web Appendix C Characterizing Generalization Error for New Data

In this appendix, we extend the discussion in Section [3.4/ by theoretically characterizing the
generalization error that arises when models trained on past experiments are applied to new
settings, following the theoretical framework proposed by Ben-David et al.|(2010). Let the data-
generating process for design features and customer covariates in past experiments be denoted
by Dpast, with the corresponding true CIF represented by 7,.s. The goal is to predict treatment
effects for a new set of offers and customers, generated from a different process Dye,, With the
true CIF denoted by 7. To analyze this problem, we draw on classical results from domain

adaptation theory (Ben-David et al.2010) to identify the fundamental factors that determine
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the generalization performance of any CIF model estimated on past experimental data when

applied to new business settings.

Theorem App-2 (Generalization Error) Let 7 be a CIF model trained on past experiments by the

empirical risk minimization problem:

K

1
min ———— E E C(T(Zg, X i), Thoi)
> [#CE]

=
k=1 jeck

where 7y, ; is an unbiased estimate of Tpast(Zy, Xyi), £ is the squared loss function, and |#CF| denotes
the number of observations in CE. Also, assume that T, Tpasts AN Trew are bounded. Then, the expected

loss for the new offers can be bounded as follows:

EDnew [g (?’ Tnew)]

IN

EDpaSt [6 (?7 7—past)} + C 5 (Dpash Dnew)
N _ N———

~
Prediction Error for Past Experiments Attribute Shift

+ Enln {EDpast [f (Tpasta Tnew)} ) EDneW [f (TPaSt’ Tnew)} }1’

Concept Shift

where C' is a constant, 6(Dpast, Drew) is the total variation distance between the two data generating

distributions, i.e., §(Dpast, Dnew) = SUPpep |Ppyu (B) — Ppye, (B)

, and B denotes the collection of all
Borel-measurable sets applicable to Dpagt and Dyew. For simplicity, (Zy, Xy;) are omitted from each

function’s notation.

Proof. To prove the theorem, we first note that

]EDnew [E (?7 Tnew)] = IE}Dnew [6 (?7 Tnew)] + EDpast |:€ (?7 Tpast):| - EDpast |:€ (6—\7 Tpast)]
]EDpast [g (?7 TneW)] - IE',Dpast [6 (?7 Tnew)]

= LDpast T, Tpast) | T+ Dpast £ \T5 Tnew )| — LLDpqq T, Tpast) | | T
< By [0 )] + [ €7, )] B [, 700

~\~
=a

lEDnew [é (?7 7—new>] - EDpaSt [é (?7 7-past)]l .

=b
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IE,Dnew [E (?7 Tnew)] = IE'Dnew [g (?7 Tnew)}
+ B [ (7 Tpast) | = By [€ (7 past) ]

+ EDpast [6 (?7 Tnew)] - EDpast [6 (?7 Tnew)]

< Eppg [ (T Tpast) ]

+ lEDpast [E (?7 Tnew)] - ]E’DPaS'f [6 (?’ Tpast)}l

-~
=a

+ ‘EDnew [6 (?7 Tnew)] - ]EDpast [E (?7 TneW)” :

J/

-~

—b
For the first term, by the reverse triangle inequality — |d(z,y) — d(z, 2)| < d(y, z) for any
valid distance metric d—we have a < Ep,,, [¢ (Tpast; Tnew)] -

For the second term, we have

b < / ‘p’Dnew (Z7 X) - p’Dpast (Za X)| 4 (7/:7 7-new) < Cé(Dpash Dnew)v

where pp,,, and pp,,,, are the density functions of the two data generating processes. Note that
the term ¢ (7, Thew) can be bounded by C as 7, ew are boubded by assumption. Therefore, we

have

EDnew [E (?7 7—new)] S EDPaSt [8 (5—\7 7_past)} + EDpast [é (Tpasta 7—new)} + C(S<Dpast; Dnew)-

Similarly, if we add and subtract Ep,,,, [¢ (T, Thew)] instead of Ep,, [¢ (T, Tnew)], we have

EDnew [E (?a 7_new)] S EDpast [E (?a Tpast)} + EDHEW V (Tpasty 7_new)} + C’5(,Z)past7 Dr\ew)-

Combining these results together proves the theorem. m

Theorem highlights three key factors that determine the upper bound of general-
ization error when extending to new settings: (i) the in-distribution generalization error of
the model on past experiments, assuming identical offers, customer profiles, and consistent

customer behaviors; (ii) distributional differences in design features and customer covariates

App-17



between past and new offers (i.e., attribute shifts); and (iii) discrepancies between the true CIF
functions in past and new settings (i.e., concept shifts).

Theorem [App-2|has several implications for practice. First, even if a model achieves strong
performance on past experimental data, its predictive accuracy on new offers may deteriorate
if the distribution of design features or customer covariates differs substantially. Second, while
attribute shifts can often be mitigated through careful experiment design, concept shifts rep-
resent a more fundamental challenge: if customer responsiveness to promotions changes in
ways not captured by past experiments, prediction error cannot be fully eliminated without
collecting new experimental data. Therefore, before deploying models to new settings, com-
panies should evaluate the extent of such shifts, such as the diagnostic analysis we conduct in

Section[8} to assess the reliability of extrapolating past models to future offers.

Web Appendix D Randomization and Interference Checks

Web Appendix D.1 Randomization Check

We perform covariate balance checks across 362 experiments by calculating the standardized
mean difference (SMD), which is the absolute difference in mean covariate values between
the treatment and control groups, normalized by the pooled within-group standard deviation.
The distribution of SMDs across the experiments is detailed in Table Notably, out of
14,480 (experiment, covariate) pairs, only 0.3% exhibit SMDs greater than 0.2, and 1.4% show
SMDs exceeding 0.1. These results suggest that there are no meaningful differences in covariate
means between the treatment and control groups across experiments.

We further test for distributional differences in each covariate between the treatment and
control groups using the Kolmogorov-Smirnov test, conducted separately for each experiment.
The distribution of the resulting p-values is summarized in Table Across 14,480 (exper-
iment, covariate) pairs, only 1.8% yield p-values below 0.01 and 4.9% below 0.05, indicating
no systematic evidence of imbalance in covariate distributions between treatment and control

groups. These results support the validity of the randomization procedure across experiments.
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Table App-1: Standardized Mean Differences of Customer Covariates

Variable Mean Std. Dev. Min Pctl. 25 Pctl. 75 Max
receipt_count 0.00 0.02 -0.13  -0.01 0.01 0.06
aov 0.00 0.01 -0.06  -0.01 0.01  0.04
item_per_order 0.00 0.01 -0.07  0.00 0.01  0.04
has_past_7 0.00 0.01 -0.06  0.00 0.01  0.06
has_past_30 0.00 0.01 -0.05  -0.01 0.01  0.08
has_past_60 0.00 0.01 -0.04  0.00 0.01  0.07
offer_receipt_count 0.03 0.06 -0.32  0.00 0.04 033
offer_aov 0.03 0.06 -0.18  0.00 0.04 033
offer_item_per_order 0.03 0.07 -0.18  0.00 0.05 042
offer_has_past_7 0.02 0.04 -0.13  0.00 0.03 0.15
offer_has_past_30 0.03 0.06 -0.15  0.00 0.04 049
offer_has_past_60 0.04 0.08 -0.16  0.00 0.05  0.56
7-ELEVEN 0.00 0.01 -0.07  -0.01 0.01  0.05
AMAZON 0.00 0.02 -0.07  -0.01 0.01  0.06
COSTCO 0.00 0.01 -0.05 -0.01 0.00  0.03
CvVs 0.00 0.02 -0.10  -0.01 0.01  0.05
KROGER 0.00 0.01 -0.04 -0.01 0.01  0.06
MCDONALD’S 0.00 0.01 -0.06  -0.01 0.01  0.07
TARGET 0.00 0.01 -0.05  -0.01 0.01  0.07
THE HOME DEPOT 0.00 0.02 -0.08  -0.01 0.01  0.05
WALGREENS 0.00 0.01 -0.05 -0.01 0.01  0.06
WALMART 0.00 0.01 -0.05  -0.01 0.01  0.06
Appetizers & Sides 0.00 0.01 -0.08  -0.01 0.01  0.05
Bakery & Bread 0.00 0.01 -0.05 -0.01 0.01  0.04
Bath & Body 0.00 0.01 -0.05  -0.01 0.01  0.05
Beer, Wine & Spirits 0.00 0.01 -0.07  -0.01 0.01 0.04
Beverages 0.00 0.01 -0.05 -0.01 0.01  0.05
Candy 0.00 0.01 -0.07  -0.01 0.01  0.04
Cat 0.00 0.02 -0.06  0.00 0.01  0.05
Dairy 0.00 0.01 -0.06  -0.01 0.01  0.04
Dog 0.00 0.02 -0.08  -0.01 0.01  0.05
Hair Care 0.00 0.01 -0.06  0.00 0.01  0.05
Household Paper & Plastic  0.00 0.01 -0.05 -0.01 0.01  0.04
Produce 0.00 0.01 -0.05  -0.01 0.01  0.04
is_referral 0.00 0.01 -0.05 -0.01 0.01 0.08
age 0.00 0.02 -0.06  -0.01 0.01  0.05
tenure 0.00 0.02 -0.08  -0.01 0.01  0.10
is_male 0.00 0.02 -0.05  -0.01 0.01  0.05
is_female 0.00 0.02 -0.05  -0.01 0.01  0.06
is non_binary? 0.00 0.02 -0.06  -0.01 0.01  0.06
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Table App-2: P-values of the KolImogorov-Smirnov Test for Distribution Difference

Variable Mean Std. Dev. Min Pctl. 25 Pctl. 75 Max
receipt_count 0.62 0.32 0.03 0.34 0.93 1.00
aov 0.57 0.32 0.02  0.30 0.86  1.00
item_per_order 0.57 0.31 0.00 033 0.87  1.00
has_past_7 0.93 0.18 0.00  0.98 1.00  1.00
has_past_30 0.97 0.10 0.07  1.00 1.00  1.00
has_past_60 0.99 0.07 0.14  1.00 1.00  1.00
offer_receipt_count 0.71 0.43 0.03  0.16 1.00 1.00
offer_aov 0.67 0.43 0.01  0.06 1.00  1.00
offer_item_per_order 0.71 0.43 0.02 018 1.00 1.00
offer_has_past_7 0.80 0.37 0.03  0.98 1.00  1.00
offer_has_past_30 0.75 0.41 0.02  0.52 1.00  1.00
offer_has_past_60 0.73 0.43 0.02 024 1.00  1.00
7-ELEVEN 0.97 0.11 013  1.00 1.00  1.00
AMAZON 0.82 0.26 001 073 1.00  1.00
COSTCO 0.85 0.23 0.01  0.77 1.00  1.00
CVS 0.82 0.26 0.04 072 1.00  1.00
KROGER 0.91 0.18 0.01 094 1.00  1.00
MCDONALD’S 0.77 0.28 0.02  0.61 1.00  1.00
TARGET 0.69 0.33 0.00 0.40 0.99  1.00
THE HOME DEPOT 0.88 0.20 0.03  0.86 1.00  1.00
WALGREENS 0.80 0.26 0.00  0.69 1.00  1.00
WALMART 0.61 0.33 0.00  0.30 0.95  1.00
Appetizers & Sides 0.80 0.27 0.00 0.65 1.00  1.00
Bakery & Bread 0.67 0.32 0.00 041 0.98  1.00
Bath & Body 0.76 0.30 001  0.57 1.00  1.00
Beer, Wine & Spirits 0.74 0.30 0.00 0.51 1.00  1.00
Beverages 0.63 0.32 0.00 0.35 092  1.00
Candy 0.67 0.32 0.00 0.42 0.98  1.00
Cat 0.86 0.23 0.04 0.83 1.00  1.00
Dairy 0.63 0.32 0.00 0.35 096  1.00
Dog 0.80 0.25 0.01  0.66 1.00  1.00
Hair Care 0.75 0.30 0.00 0.54 1.00  1.00
Household Paper & Plastic  0.69 0.32 0.01 044 0.99 1.00
Produce 0.65 0.32 0.00 0.38 0.97  1.00
is_referral 0.90 0.22 0.03 095 1.00  1.00
age 0.59 0.31 0.00 0.33 0.89  1.00
tenure 0.47 0.31 0.00 0.17 0.74  1.00
is_male 0.96 0.12 0.16  1.00 1.00  1.00
is_female 0.93 0.16 0.02  0.97 1.00  1.00
is_non_binary? 1.00 0.02 076  1.00 1.00  1.00
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Web Appendix D.2 Testing the No Interference Assumption

This appendix provides empirical evidence that interference from multiple offers is minimal.
Because the number of concurrent offers a customer receives is correlated with purchasing
behavior (likely due to specific eligibility criteria set by the platform), we apply the double ma-
chine learning framework (Chernozhukov et al.[2018) to control for this selection effect. Specif-
ically, we test whether the number of additional offers a customer receives causally influences
the estimated treatment effects of the focal offer.

For every offer, we first calculate the DR score 7, using the approach described in

|Appendix E.1 We then apply the double machine learning approach to estimate the following

partially linear models:

~ Total p7Total Total Total Total Total Total
Tri = B Nig o +m 2 (Xgs) + 640 Nii® =07 (Xga) + M
~ Category »rCategory Categor Category Category Categor Category
Thi = Py, Ny + mTEY (X ) + ey v Ny, = g "BV (X)) + Mg ;

where N9 denotes the total number of active offers available to customer i when offer k was
active, and Ny¢“®*” denotes the number of active offers promoting the same category available
to customer ¢ at that time. Here, we use XGBoost with default settings as implemented in the
DoubleML package (Bach et al.2022) with ten-fold cross-fitting to estimate the control functions
m and g. In the absence of interference among different offers, we would expect that et = 0
and .78 — ( for most offers.

Figure shows the distribution of t-statistics for the estimated %! and 5°"¥*Y across
362 offers. Notably, (i) only 1.6% of offers have 5 exceeding the critical value at the 1%
significance level, and 5.2% exceed the threshold at the 5% level; and (ii) only 1.4% of offers
have ;""" exceeding the 1% threshold, with 4.7% exceeding the 5% threshold. These low

rejection rates suggest that there is no evidence of interference in our empirical context.
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Figure App-1: t-statistics for Interference Test across 362 Offers

Interference Test: Offer Count Interference Test: Same-Category Offer Count

10.0% 12.5%

% Offers
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7.5%
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25 0.0 25 5.0
t-statistic t—statistic

Note. The dashed line indicates the critical value for rejecting the null hypothesis that the coefficient is zero at the 1% significance level.

Web Appendix E Model Implementation

Web Appendix E.1 Construction of DR Score

To construct the DR score for model calibration in Section [6, we use observations from the
training set to estimate the conditional mean outcome models (ZZLTf l'and ﬁggoi]) using five-fold
cross-fitting. Because treatment assignment is random, we set the propensity score for each
offer equal to the proportion of observations in the training set that received the offer. We then
substitute these estimated nuisance components into Equation [I] to obtain the final DR score.
To estimate the nuisance conditional mean outcome models for each offer, we consider three
model classes: elastic net regression, random forests, and XGBoost. For each class, we conduct

five-fold cross-validation over a predefined grid of hyperparameters:

1. ELASTIC NET: Implemented using the glmnet package in R. The two main hyperparame-
ters are a, which controls the mixing between L1 and L2 penalties, and ), the regularization

strength. We select a € {0.2,0.4,0.6,0.8,1.0} and A € {0.2,0.4,0.6,0.8,1.0}.

2. RANDOM FORESTS: Implemented using the ranger package in R. We tune the num-
ber of trees and the maximum depth of each tree. The number of trees is selected from

{100, 250, 500, 750, 1000}, and maximum depth from {2, 5, 10, 15, 20}.
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3. XGBOOsT: Implemented using the xgboost package in R. We tune the maximum depth of
a tree from {2, 5, 10, 15,20}, the learning rate n € {0.2,0.4,0.6,0.8,1.0}, and the number of
boosting rounds from {20, 40, 60, 80, 100}.

Table reports the mean squared error (MSE) of the best-performing model within
each model class. Overall, both random forest and XGBoost outperform the elastic net, with
random forest and XGBoost exhibiting comparable levels of accuracy. For all results in this
paper, we adopt the XGBoost model with hyperparameters (depth = 5, n = 0.2, number of

iterations = 40), as it achieves the lowest MSE.

Table App-3: Mean Squared Error of the Best-Performing Model in Each Class

Model Class Treatment Control
ELASTIC NET (v = 0.4, A = 0.8) 8651.5 8601.9
RANDOM FOREST (Depth = 10, Number of trees = 250) 8550.1 8543.5
XGBOOST (Depth = 5, n = 0.2, number of iterations = 40) 8544.2 8536.9

Web Appendix E.2 Model Specification Deep Learning Models

As described in Section we implement two three-layer fully connected neural networks
for representation learning and one three-layer fully connected neural network for outcome
prediction. Each hidden layer contains 10 nodes. When the representation dimensions are set
to Ky = K, = 10, the overall architecture comprises 1,501 trainable parameters.

For the other two joint models in Section [5.2| (i.e., the standard fully connected neural net-
works architecture with and without design features), we employ an six-layer fully-connected
neural network. The first hidden layer consists of 20 nodes, while the subsequent layers each
have 10 nodes. This configuration results in a total of 1,441 parameters for the standard DNN
with design features and 881 parameters for the standard DNN without design features.

For the joint models in Section |5.2| — that is, the standard fully connected neural network
architectures with and without design features—we employ a six-layer fully connected neu-
ral network. The first hidden layer contains 20 nodes, and each subsequent layer contains 10

nodes. This configuration yields a total of 1,441 parameters for the standard DNN with de-
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sign features and 881 parameters for the version without design features. For the individual-
modeling approach, we apply the same neural network architecture as the standard DNN with-
out design features to each offer separately.

Across all neural network models, we use ReLU activation functions for the hidden units
and a linear activation function for the output layer. For calibrating the parameterss, we em-
ploy mini-batch stochastic gradient descent with a batch size of 30 across all architectures.
The learning rate is adaptively adjusted using the Ada-delta algorithm (Zeiler|2012), as imple-
mented in Keras (Chollet et al.[2015). Each network is trained for 10 epochs, which we selected

based on the observation that validation performance stabilizes within this training horizon.

Web Appendix F Robustness Check

Web Appendix F.1 Additional Benchmark Models

In this appendix, we examine alternative model classes for CIF estimation and compare their

performance with that of our proposed two-stage model with the DRL architecture.

Web Appendix F.1.1 Model Classes

We consider the following alternative model classes as benchmarks.

Alternative Model Classes for the Second Stage Models. We first evaluate alternative model
classes within our proposed CIF estimation framework, using them as the second-stage model
to predict the DR scores constructed in the first stage. For hyperparameter tuning, we perform
tive-fold cross-validation to identify the hyper-parameters that minimize the MSE in approxi-

mating the first-stage DR scores.

1. ELASTIC NET: Implemented using the h2o package in R. The two key hyperparameters
are «, which determines the mixing ratio between L1 and L2 penalties, and ), which
controls the overall regularization strength. We consider a € {0.2,0.4,0.6,0.8,1.0} and
A €{0.2,0.4,0.6,0.8,1.0}. The optimal values are « = 0.4 and A = 0.6.
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2. XGBOOST: Implemented using the xgboost package in R. We tune the maximum tree
depth from {2, 5,10, 15,20}, the learning rate n € {0.2,0.4,0.6,0.8,1.0}, and the number
of boosting rounds from {20, 40, 60, 80, 100}. The optimal configuration is a tree depth of

5, learning rate 7 = 0.2, and 40 boosting iterations.

Joint T-learner Models. We also adapt the popular T-learner approach for CATE estimation
(Kiinzel et al.|2019) to our context. Specifically, we pool all experiments and jointly estimate
two conditional mean outcome models as functions of design features and customer covariates,

one for observations in the treatment group and the other for those in the control group.

1. STANDARD DNN: We implement a standard DNN with the same architecture as de-

scribed in Section 6l

2. ELASTIC NET: Implemented using the h2o package in R. The two key hyperparameters
are «, which determines the mixing ratio between L1 and L2 penalties, and ), which
controls the overall regularization strength. We consider a € {0.2,0.4,0.6,0.8,1.0} and
A €{0.2,0.4,0.6,0.8,1.0}. The optimal hyperparameters are & = 0.2 and A = 0.6 for the

treatment group model, and a = 0.4 and A = 0.6 for the control group model.

3. XGBOOST: Implemented using the xgboost package in R. We tune the maximum tree
depth from {2, 5, 10, 15, 20}, the learning rate n € {0.2,0.4,0.6, 0.8, 1.0}, and the number of
boosting rounds from {20, 40, 60, 80, 100}. The optimal configuration is a tree depth of 5,
learning rate = 0.4, and 40 boosting iterations for the treatment group model, and a tree

depth of 5, learning rate = 0.2, and 60 boosting iterations for the control group model.

Individual CATE Models. We also evaluate alternative individual CATE models for each
experiment using both the DR-Learner and the T-Learner approaches. For the DR-Learner,
we implement both ELASTIC NET and XGBOOST using the same hyperparameter tuning grids
described above. The optimal hyperparameters for ELASTIC NET are o« = 0.6 and A = 0.8,
while the optimal configuration for XGBOOST is a tree depth of 5, learning rate n = 0.2, and 40

boosting iterations.
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For the T-learner, we consider three model classes: STANDARD DNN (without design fea-
tures), XGBOOST, and ELASTIC NET. For the STANDARD DNN, we use the same model archi-
tecture described in Section|6] For ELASTIC NET, the optimal hyperparameters are o = 0.4 and
A = 0.8 for the treatment group model, and o = 0.6 and A = 0.6 for the control group model.
For XGBOOST, the optimal configuration is a tree depth of 5, learning rate = 0.2, and 40
boosting iterations for the treatment group model, and a tree depth of 5, learning rate n = 0.4,

and 40 boosting iterations for the control group model.

Web Appendix F.1.2 Results

Targeting for Tested Offers. We first replicate the analysis in Section |6.1] for the models de-
scribed above. Table reports the mean AUTOC and normalized profit across 20 train-
ing-holdout splits for different treatment effect prediction models. First, we find that the pro-
posed model (Row 1) consistently outperforms all alternatives. Second, and importantly, most
joint models (Row 1 to Row 8) except for the Elastic Net outperform their counterparts that
model each experiment separately (Row 9 to Row 14). Third, the joint T-learner models (Row
6 to Row 8) also achieve higher treatment prioritization and profitability compared to individ-

ually estimated models (Row 12 to Row 14).

Targeting for Untested Offers. Next, we replicate the analysis in Section [6.2| for the models
described above. Table[App-5|reports the mean AUTOC and normalized profit across 20 train-
ing-holdout splits. First, we find that the proposed model (Row 1) consistently outperforms
all alternatives. Second, all joint models (Row 1 to Row 8) outperform their counterparts that
model each experiment separately (Row 9 to Row 14). Third, the joint T-learner models (Row
6 to Row 8) also achieve higher treatment prioritization and profitability compared to individ-
ually estimated models (Row 12 to Row 14).

Together, these results demonstrate that the benefits of leveraging and integrating insights

from past experiments are robust across different modeling frameworks.
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Table App-4: Targeting Performance on Holdout Observations: Different Treatment Effect Models

Model

AUTOC

% Outperf. Profit % Outperf.

Joint Modeling: Two-Stage Estimation Using DR Scores

Joint: Proposed DRL 0.47 (0.12) — 1.37 (0.10) —

Joint: Standard DNN 0.36 (0.11) 85% 1.16 (0.19) 90%
Joint: Standard DNN w /o Design Features 0.37 (0.09) 100% 1.33 (0.13) 85%
Joint: XGBoost 0.41 (0.33) 60% 1.13 (0.10) 100%
Joint: Elastic Net 0.15 (0.10) 90% 0.88 (0.10) 100%

Joint Modeling: T-learner
Joint T-learner: Standard DNN 0.29 (0.11) 100% 1.25 (0.10) 75%
Joint T-learner: XGBoost 0.37 (0.17) 70% 1.23 (0.21) 75%
Joint T-learner: Elastic Net 0.19 (0.09) 100% 1.31 (0.09) 85%
Individual Modeling: DR-learner
Individual: Standard DNN 0.11 (0.07) 100% 0.96 (0.07) 100%
Individual: XGBoost 0.18 (0.07) 100% 1.05 (0.12) 100%
Individual: Elastic Net 0.16 (0.17) 80 1.12 (0.09) % 100%
Individual Modeling: T-learner

Individual T-learner: Standard DNN 0.15 (0.09) 100% 1.04 (0.06) 100%
Individual T-learner: XGBoost 0.14 (0.05) 100% 1.04 (0.14) 100%
Individual T-learner: Elastic Net 0.13 (0.12) 100% 1.09 (0.08) 100%

Note: We report the mean AUTOC and normalized profit across 20 train-holdout splits. Standard deviations are shown in parentheses. The
third and fifth columns (“% Outperf.”) report the percentage of splits in which the proposed model (first row) outperformed each benchmark

in AUTOC and normalized profit, respectively.
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Table App-5: Targeting Performance on Holdout Offers: Different Treatment Effect Models

Model

AUTOC

% Outperf.

Profit

% Outperf.

Joint Modeling: Two-Stage Estimation Using DR Scores

Joint: Proposed DRL 0.47 (0.14) — 1.19 (0.09) —

Joint: Standard DNN 0.22 (0.13) 100% 0.97 (0.06) 100%
Joint: Standard DNN w /o Design Features 0.37 (0.11) 75% 1.11 (0.09) 90%
Joint: XGBoost 0.41 (0.24) 65% 1.09 (0.09) 100%
Joint: Elastic Net 0.19 (0.27) 100% 0.91 (0.04) 100%

Joint Modeling: T-learner
Joint T-learner: Standard DNN 0.30 (0.10) 90% 1.08 (0.1) 100%
Joint T-learner: XGBoost 0.37 (0.10) 80% 1.14 (0.12) 85%
Joint T-learner: Elastic Net 0.17 (0.17) 100% 1.14 (0.09) 90%
Individual Modeling: DR-learner
Individual: Standard DNN 0.02 (0.08) 100% 0.85 (0.03) 100%
Individual: XGBoost 0.11 (0.04) 100% 0.75 (0.04) 100%
Individual: Elastic Net 0.06 (0.12) 100% 0.82 (0.03) 100%
Individual Modeling: T-learner

Individual T-learner: Standard DNN 0.04 (0.13) 100% 0.80 (0.03) 100%
Individual T-learner: XGBoost 0.00 (0.06) 100% 0.74 (0.04) 100%
Individual T-learner: Elastic Net -0.01 (0.08) 100% 0.84 (0.03) 100%

Note: We report the mean AUTOC and normalized profit across 20 train—holdout splits. Standard deviations are shown in parentheses. The
third and fifth columns (“% Outperf.”) report the percentage of splits in which the proposed model (first row) outperformed each benchmark

in AUTOC and normalized profit, respectively.
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Web Appendix F.2 Sizes of Neural Network Models

In this appendix, we evaluate the robustness of our results with respect to depth and width of

different neural network models.

Web Appendix F.2.1 Depth of Neural Network Models

We test a shallow architecture by removing one hidden layer from both the representation and

prediction networks described in SectionWeb Appendix E.2l We also test a deep architecture

by adding one additional hidden layer to each of the two networks. Each hidden layer contains

ten nodes. The same architectural modifications are applied to the other deep learning models

discussed in SectionWeb Appendix F.1

Targeting for Tested Offers. We replicate the analysis in Section[6.]|using DNN-based models
with varying neural network depths. Table reports the AUTOC and normalized profit
for DNN-based models. Column 4 shows the proportion of each metric relative to that of the
proposed DRL model with the same network depth (i.e., the first row of each subtable). Overall,
the results remain consistent across different network depths, with the baseline architecture
slightly outperforming both deeper and shallower variants. This finding suggests that the

proposed model’s performance is robust to different network depth.

Targeting for Untested Offers. Next, we extend the analysis in Section to DNN-based
models with varying network depths. Table reports the AUTOC and normalized profit
for these models. Column 4 presents each metric as a proportion relative to the proposed DRL
model with the same depth (i.e., the first row of each subtable). Overall, the results are consis-
tent across different network depths, with the baseline architecture slightly outperforming both
deeper and shallower variants. This finding indicates that the proposed model’s performance

is robust to variations in network depth.
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Table App-6: Targeting Performance on Holdout Observations: Different DNN Depths

Model AUTOC % Outperf. Profit % Outperf.
Shallow Architecture
Joint: Proposed DRL 0.46 (0.07) — 1.28 (0.09) —
Joint: Standard DNN 0.34 (0.09) 100% 1.14 (0.13) 100%
Joint: Standard DNN w /o Design Features 0.34 (0.10) 85% 1.20 (0.08) 90%
Joint T-learner: Standard DNN 0.29 (0.07) 100% 1.24 (0.08) 90%
Individual: Standard DNN 0.14 (0.14) 100% 0.87 (0.05) 100%
Individual T-learner: Standard DNN 0.33(0.17) 80% 0.90 (0.06) 100%
Baseline Architecture (Main Analysis in Section (6.1
Joint: Proposed DRL 0.47 (0.12) — 1.37 (0.10) —
Joint: Standard DNN 0.36 (0.11) 85% 1.16 (0.19) 90%
Joint: Standard DNN w /o Design Features 0.37 (0.09) 100% 1.33 (0.13) 85%
Joint T-learner: Standard DNN 0.29 (0.11) 100% 1.25 (0.11) 75%
Individual: Standard DNN 0.11 (0.07) 100% 0.96 (0.07) 100%
Individual T-learner: Standard DNN 0.15 (0.09) 100% 1.04 (0.06) 100%
Deep Architecture

Joint: Proposed DRL 0.46 (0.08) — 1.24 (0.08) —
Joint: Standard DNN 0.39 (0.12) 90% 1.02 (0.14) 100%
Joint: Standard DNN w /o Design Features 0.41 (0.05) 85% 1.22 (0.08) 80%
Joint T-learner: Standard DNN 0.35 (0.06) 100% 1.24 (0.10) 70%
Individual: Standard DNN 0.15 (0.12) 100% 0.88 (0.05) 100%
Individual T-learner: Standard DNN 0.28 (0.10) 100% 1.08 (0.06) 100%

Note: We report the mean AUTOC and normalized profit across 20 train-holdout splits. Standard deviations are shown in parentheses, and
the fourth column presents the percentage of splits in which the proposed DRL architecture (first row) outperformed each benchmark in terms
of AUTOC and normalized profit, respectively.
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Table App-7: Targeting Performance on Holdout Observations: Different DNN Depths

Model AUTOC % Outperf. Profit % Outperf.
Shallow Architecture
Joint: Proposed DRL 0.42 (0.07) — 1.18 (0.09) —
Joint: Standard DNN 0.34 (0.09) 75% 1.04 (0.13) 100%
Joint: Standard DNN w /o Design Features 0.34 (0.10) 70% 1.10 (0.08) 85%
Joint T-learner: Standard DNN 0.29 (0.07) 100% 1.14 (0.08) 90%
Individual: Standard DNN 0.14 (0.14) 100% 0.87 (0.05) 100%
Individual T-learner: Standard DNN 0.23 (0.17) 85% 0.90 (0.06) 100%
Baseline Architecture (Main Analysis in Section (6.2
Joint: Proposed DRL 0.47 (0.14) — 1.19 (0.09) —
Joint: Standard DNN 0.22 (0.13) 100% 0.97 (0.06) 100%
Joint: Standard DNN w/o Design Features 0.37 (0.11) 75% 1.11 (0.09) 90%
Joint T-learner: Standard DNN 0.30 (0.10) 90% 1.08 (0.1) 100%
Individual: Standard DNN 0.02 (0.08) 100% 0.85 (0.03) 100%
Individual T-learner: Standard DNN 0.04 (0.13) 100% 0.80 (0.03) 100%
Deep Architecture

Joint: Proposed DRL 0.45 (0.09) — 1.18 (0.05) —
Joint: Standard DNN 0.34 (0.17) 75% 1.06 (0.13) 90%
Joint: Standard DNN w /o Design Features  0.41 (0.08) 85% 1.16 (0.06) 75%
Joint T-learner: Standard DNN 0.36 (0.07) 80% 1.09 (0.08) 90%
Individual: Standard DNN -0.01 (0.1) 100% 0.83 (0.04) 100%
Individual T-learner: Standard DNN -0.03 (0.07) 100% 0.81 (0.04) 100%

Note: We report the mean AUTOC and normalized profit across 20 train—-holdout splits. Standard deviations are shown in parentheses. The
third and fifth columns (“% Outperf.”) report the percentage of splits in which the proposed model (first row) outperformed each benchmark
in AUTOC and normalized profit, respectively.
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Web Appendix F.2.2 Representation Dimensionality of Neural Network Models

In this appendix, we evaluate the robustness of the model’s targeting performance with respect
to variations in both representation dimensionality. To assess robustness to representation di-
mensionality, we vary the number of dimensions for both the intervention and covariate rep-
resentations, setting them to 5, 10, 20, 30, and 40, respectively. For the other deep learning
models, we adjust the width of the middle hidden layer to approximate these same represen-

tation dimensionalities, ensuring comparability with the proposed architecture.

Targeting for Tested Offers. We replicate the analysis in Section |6.1{ using DNN-based mod-
els with varying representation dimensions. Table reports the AUTOC and normalized
profit for these models across different network widths. Column 4 shows each metric as a pro-
portion relative to the proposed DRL model with the same representation dimension (i.e., the
tirst row of each subtable). Overall, the results are consistent across variations in representa-
tion dimensionality, indicating that the proposed model’s performance is robust to architectural

changes.

Targeting for Untested Offers. We reproduce the analysis from Section [6.2]using DNN-based
models with different representation dimensionalities. Table presents the AUTOC and
normalized profit for these models across varying network widths. Column 4 reports each
metric as a ratio relative to the proposed DRL model with the corresponding representation di-
mension (i.e., the first row in each subtable). Overall, the results remain stable across changes
in representation size, suggesting that the proposed model’s performance is resilient to reason-

able architectural variations.
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Table App-8: Targeting Performance on Holdout Observations: Varying Dimensionality

Model AUTOC % Outperf. Profit % Outperf.
Dimension =5
Joint: Proposed DRL 0.45 (0.10) — 1.21 (0.06) —
Joint: Standard DNN 0.34 (0.18) 75% 1.04 (0.16) 100%
Joint: Standard DNN w/o Design Features 0.33 (0.06) 90% 1.13 (0.08) 80%
Joint T-learner: Standard DNN 0.25 (0.09) 90% 1.13 (0.07) 80%
Individual: Standard DNN 0.07 (0.15) 100% 0.88 (0.05) 100%
Individual T-learner: Standard DNN 0.21 (0.14) 100% 0.93 (0.05) 100%
Dimension = 10 (Main Analysis in Section 6.1
Joint: Proposed DRL 0.47 (0.12) — 1.37 (0.10) —
Joint: Standard DNN 0.36 (0.11) 85% 1.16 (0.19) 90%
Joint: Standard DNN w /o Design Features 0.37 (0.09) 100% 1.33 (0.13) 85%
Joint T-learner: Standard DNN 0.29 (0.11) 100% 1.25 (0.10) 75%
Individual: Standard DNN 0.11 (0.07) 100% 0.96 (0.07) 100%
Individual T-learner: Standard DNN 0.15 (0.09) 100% 1.04 (0.06) 100%
Dimension = 20
Joint: Proposed DRL 0.53 (0.32) — 1.28 (0.05) —
Joint: Standard DNN 0.41 (0.09) 75% 1.19 (0.14) 90%
Joint: Standard DNN w/o Design Features 0.28 (0.09) 90% 1.23 (0.06) 90%
Joint T-learner: Standard DNN 0.33 (0.07) 90% 1.21 (0.04) 80%
Individual: Standard DNN 0.02 (0.12) 100% 0.94 (0.08) 100%
Individual T-learner: Standard DNN 0.21 (0.14) 100% 0.93 (0.05) 100%
Dimension = 30
Joint: Proposed DRL 0.44 (0.15) — 1.32 (0.04) —
Joint: Standard DNN 0.38 (0.20) 90% 1.11 (0.15) 90%
Joint: Standard DNN w/o Design Features 0.37 (0.05) 90% 1.19 (0.08) 100%
Joint T-learner: Standard DNN 0.34 (0.09) 100% 1.32 (0.05) 70%
Individual: Standard DNN 0.22 (0.08) 100% 0.93 (0.07) 100%
Individual T-learner: Standard DNN 0.38 (0.14) 80% 1.02 (0.04) 100%
Dimension = 40
Joint: Proposed DRL 0.47 (0.26) — 1.31 (0.04) —
Joint: Standard DNN 0.34 (0.20) 90% 1.08 (0.15) 100%
Joint: Standard DNN w/o Design Features 0.38 (0.06) 85% 1.23 (0.09) 100%
Joint T-learner: Standard DNN 0.38 (0.07) 100% 1.29 (0.05) 80%
Individual: Standard DNN 0.20 (0.19) 100% 0.95 (0.06) 100%
Individual T-learner: Standard DNN 0.36 (0.16) 90% 1.02 (0.05) 100%

Note: We report the mean AUTOC and normalized profit across 20 train-holdout splits. Standard deviations are shown in parentheses. The
third and fifth columns (“% Outperf.”) report the percentage of splits in which the proposed model (first row) outperformed each benchmark
in AUTOC and normalized profit, respectively.
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Table App-9: Targeting Performance on Holdout Offers: Varying Dimensionality

Model AUTOC % Outperf. Profit % Outperf.
Dimension =5
Joint: Proposed DRL 0.48 (0.11) — 1.20 (0.08) —
Joint: Standard DNN 0.28 (0.16) 90% 1.06 (0.10) 100%
Joint: Standard DNN w/o Design Features 0.42 (0.09) 85% 1.01 (0.42) 100%
Joint T-learner: Standard DNN 0.37 (0.10) 75% 1.08 (0.06) 90%
Individual: Standard DNN 0.01 (0.10) 100% 0.89 (0.04) 100%
Individual T-learner: Standard DNN -0.02 (0.06) 100% 0.87 (0.04) 100%
Dimension = 10 (Main Analysis in Section 6.2
Joint: Proposed DRL 0.47 (0.14) — 1.19 (0.09) —
Joint: Standard DNN 0.22 (0.13) 100% 0.97 (0.06) 100%
Joint: Standard DNN w /o Design Features 0.37 (0.11) 75% 1.11 (0.09) 90%
Joint T-learner: Standard DNN 0.30 (0.10) 90% 1.08 (0.1) 100%
Individual: Standard DNN 0.02 (0.08) 100% 0.85 (0.03) 100%
Individual T-learner: Standard DNN 0.04 (0.13) 100% 0.80 (0.03) 100%
Dimension = 20
Joint: Proposed DRL 0.47 (0.19) — 1.21 (0.11) —
Joint: Standard DNN 0.26 (0.22) 90% 1.01 (0.13) 100%
Joint: Standard DNN w/o Design Features 0.38 (0.14) 85% 1.14 (0.12) 100%
Joint T-learner: Standard DNN 0.34 (0.15) 100% 1.12 (0.10) 100%
Individual: Standard DNN 0.00 (0.06) 100% 0.86 (0.04) 100%
Individual T-learner: Standard DNN 0.05 (0.08) 100% 0.84 (0.04) 100%
Dimension = 30
Joint: Proposed DRL 0.48 (0.12) — 1.18 (0.10) —
Joint: Standard DNN 0.37 (0.20) 90% 1.08 (0.14) 90%
Joint: Standard DNN w/o Design Features 0.34 (0.14) 100% 1.11 (0.09) 90%
Joint T-learner: Standard DNN 0.38 (0.18) 80% 1.09 (0.10) 100%
Individual: Standard DNN -0.01 (0.09) 100% 0.86 (0.04) 100%
Individual T-learner: Standard DNN 0.01 (0.09) 100% 0.83 (0.03) 100%
Dimension = 40
Joint: Proposed DRL 0.45 (0.31) — 1.18 (0.12) —
Joint: Standard DNN 0.20 (0.18) 90% 1.02 (0.12) 100%
Joint: Standard DNN w/o Design Features 0.32 (0.16) 85% 1.12 (0.12) 90%
Joint T-learner: Standard DNN 0.30 (0.23) 100% 1.13 (0.14) 90%
Individual: Standard DNN -0.01 (0.07) 100% 0.87 (0.02) 100%
Individual T-learner: Standard DNN 0.01 (0.08) 100% 0.83 (0.02) 100%

Note: We report the mean AUTOC and normalized profit across 20 train-holdout splits. Standard deviations are shown in parentheses. The
third and fifth columns (“% Outperf.”) report the percentage of splits in which the proposed model (first row) outperformed each benchmark
in AUTOC and normalized profit, respectively.
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Web Appendix G Analysis of Offer and Covariate Representations

One key feature of the proposed architecture is that it generates two separate representations:
one for the intervention design features (¢;) and another for the customer covariates (x;, ;). Im-
portantly, these representations capture information directly relevant to treatment effect hetero-
geneity, providing insights more actionable for managers than those derived from analyzing
raw design features or customer covariates alone. In this section, we illustrate these benefits
by conducting segmentation analyses based on the learned representations in our empirical
application and comparing them with analyses using the original variables, highlighting how

the model uncovers distinct and more informative patterns.

Web Appendix G.1 Offer Design

To illustrate the interpretability of the learned design representations, we visualize the two-
dimensional projection of the offer embeddings. Specifically, we extract the representation vec-
tors for the 362 existing offers (denoted as ¢;) from the proposed DRL-based CIF model. We
then apply t-distributed stochastic neighbor embedding (t-SNE; Van der Maaten and Hinton
2008) to project these high-dimensional representations into a two-dimensional space and use
the DBSCAN algorithm (Ester et al.|[1996) to identify clusters of offers with similar incremental-
ity representations. The resulting t-SNE visualization is presented in Figure (a), where
each point corresponds to a distinct offer design, and the spatial proximity between points re-
flects similarity in their learned representations. In addition, Figure (b) summarizes the
profiles of each identified cluster based on the raw design features (Z;) of the offers it contains.
For continuous variables, we report the cluster means, and for product categories, we present
the most frequently occurring labels within each cluster.

Overall, we find that the representation clusters are primarily shaped by incentive features
such as reward points, required spending, and required quantities, which jointly determine the
attractiveness and difficulty of an offer. For example, clusters in the upper half of the map corre-
spond to promotions with higher reward point values (e.g., 4,000-7,000 points) and requiring

minimum purchase quantities, whereas those in the lower half contain offers with lower to
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moderate reward levels (around 3,000 points) and requiring minimum dollar spending. This
pattern suggests that the company should consider the balance between incentive magnitude
and offer difficulty when designing new promotions, ensuring that the reward structure re-
mains appealing while maintaining profitability.

In addition, the t-SNE map shows that offers from different product categories are often
located close to one another, reflecting cross-category similarity in their learned incrementality
representations. In particular, Candy and Chocolate offers are positioned near Gum and Mints
within the purple cluster in the lower-right corner, and this cluster lies adjacent to Snacks (or-
ange cluster). This spatial proximity suggests that promotions in these categories generate
similar incremental responses. Such patterns provide insight into which product categories
may exhibit greater cross-category transferability, where effective promotion strategies in one
category (e.g., Candy and Chocolate) could be applied successfully to others with comparable

incentive dynamics, such as Snacks or Gum and Mints.

Figure App-2: t-SNE Maps for Offer Incrementality Representations (¢;)
(a) t-SNE Map for Each Offer (b) t-SNE Map for Each Cluster
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Note. Each point on the map corresponds to a promotional offer, with colors indicating the clusters determined by the DBSCAN algorithm.
Labels with colored backgrounds show the average reward points (Pts), required dollar amounts (DR, set as zero for offers requiring certain
product quantities), required quantities (QR, set as zero for offers requiring minimum dollar spending), and the top two promoted categories
for each cluster with their incidence in parentheses.

Next, we compare the offer incrementality representations to the raw design features to
demonstrate that the learned embeddings capture treatment-effect-relevant information be-

yond simple design similarity. To do so, we replicate the previous t-SNE and clustering exercise
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but instead use the standardized raw design features (e.g., reward points, required spending,
required quantity) as inputs. These features primarily reflect observable design configurations,
rather than the underlying incremental impact of the offers. Figure (a) presents the t-
SNE projection of offers based on raw design features, and Figure (b) summarizes the
corresponding cluster features.

Overall, compared to the t-SNE map of the incrementality representations, we find that
the t-SNE map based on raw design features exhibits no clear or coherent cluster structure.
The resulting clusters are primarily driven by product category rather than by the mechan-
ical incentive structure of the offers. In contrast to the learned representation space, these
raw-feature clusters show limited overlap across categories and fail to reveal cross-category
relationships. This comparison underscores that the proposed model learns representations
driven by treatment-effect similarity, rather than by differences in observed design features
across offers.

Figure App-3: t-SNE Maps for Offer Design Features
(a) t-SNE Map for Each Offer (b) t-SNE Map for Each Cluster
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Note. Each point on the map corresponds to a promotional offer, with colors indicating the clusters determined by the DBSCAN algorithm.
Labels with colored backgrounds show the average reward points (Pts), required dollar amounts (DR, set as zero for offers requiring certain
product quantities), required quantities (QR, set as zero for offers requiring minimum dollar spending), and the top two promoted categories
for each cluster with their incidence in parentheses.
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Web Appendix G.2 Customer Covariates

We conduct a parallel analysis comparing clusters derived from the learned representations of
customer covariates (x;, ;) with those obtained directly from the standardized raw covariates.
Specifically, we apply K-means clustering and select three distinct customer segments for illus-
trative purposes. The analysis is performed using both (a) the incrementality representations
derived from the proposed model and (b) the rescaled raw covariate values from a random sub-
sample of 100,000 observations across 362 experiments. Once the segments are identified, we
profile each group by averaging customers’ covariates to characterize their behavioral patterns.
We report both general purchase behavior, which captures all receipts uploaded within the 90
days prior to the offer and the corresponding average order value (AOV), and offer-related be-
havior, defined as the number of receipts and AOV specifically associated with purchases that
include products from the focal offer categories. Table presents both sets of results,

with segments sorted by the average total number of receipts (first column).

Table App-10: Summary of Different Customer Segmentation Approaches)

(a) Segments Based on Incrementality Representations (b) Segments Based on Covariate Values
General Offer-related . General Offer-related A
Proportion Proportion
Receipts AOV Receipts AOV Receipts AOV Receipts AOV
10.3 $21.2 0.19 $1.9 44% 1.0 $4.3 0.00 $0.0 23%
73.6 $59.4 0.42 $3.1 46% 71.0 $61.6 0.06 $0.4 58%
204.7 $101.2 0.74 $5.2 10% 84.6 $54.9 1.82 $14.0 19%

Upon initial examination, both approaches appear to segment customers primarily by their
overall engagement level with the platform, as reflected in the differences in the number of re-
ceipts shown in the first column of Tables (a) and (b). However, segmentation
based on the incrementality representations reveals more granular distinctions in offer-related
behavior. Specifically, while both approaches identify a large segment of moderately engaged
customers, the representation-based segmentation distinguishes between those who frequently
upload receipts and are more likely to purchase promoted items (Row 2 in Table (a),
receipts = 0.42, offer-related AOV = $3.1) and those with no prior purchase of promoted items
(Row 1 in Table[App-10|(a), receipts = 0.19, offer-related AOV = $1.9). In contrast, segmentation

based on raw covariate values produces clusters that mainly capture general purchasing vol-
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ume (e.g., high vs. low activity) but fail to differentiate customers by their baseline propensity
to purchase promoted items, as both the least and moderately engaged segments (Row 1 and 2
in (b)) contain customers with no recorded purchases of promoted items.

This divergence has important managerial implications for targeting decisions. For in-
stance, even if the firm aims to deliver interventions to “medium-engagement” customers,
the two segmentation approaches would identify significantly different target groups. Un-
der covariate-based segmentation, the firm might target customers who are moderately active
overall but have demonstrated little interest in promoted products. In contrast, representation-
based segmentation would target customers who exhibit medium engagement but with prior
purchases on promoted items — those most likely to generate incremental gains. Thus, seg-
mentation grounded in learned representations enables more precise and causally informed

targeting, leading to more effective allocation of marketing resources.
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