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Abstract

Firms often rely on randomized experiments to estimate customer-level treatment effects
for targeting policies. Standard “test-then-learn” approaches typically sample customers uni-
formly to optimize estimation accuracy but ignore economic objectives, leading to statistically
sound yet economically suboptimal targeting policies. We propose a novel experimental de-
sign— policy-aware experimentation — that directly incorporates firm’s profit-maximizing objec-
tive into the sampling strategy. Specifically, we introduce expected profit loss (EPL), a criterion
that prioritizes sampling customers whose treatment effect estimation errors most likely affect
profitability. We prove that allocating experimental resources based on EPL achieves near-
optimality with theoretical guarantees, and develop a sequential sampling algorithm that pri-
oritizes customers with highest EPLs for practical implementation.

Using simulations and two empirical applications, we show that our approach yields more
profitable targeting policies than existing methods. Across both applications, our approach
improves targeting performance by 5% to 10% in profit terms relative to standard methods,
and achieves comparable outcomes with up to 80% fewer experimental samples, highlighting
substantial gains in both targeting effectiveness and data efficiency.

Managerially, our results underscore the importance of aligning experimental design with
business objectives. By focusing data collection on customers who matter most for decision
quality, firms can develop more effective targeting policies without increasing experimental
costs.
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1. Introduction

Firms today have unprecedented access to detailed consumer information, enabling the design
of highly customized targeting strategies. To develop these strategies, firms increasingly rely on
randomized experiments to estimate how customers respond to marketing interventions and use
these estimates to build data-driven targeting policies (e.g., Ascarza 2018; Simester et al. 2020;
Yang et al. 2023). Targeting decisions are particularly critical when interventions involve non-
trivial costs or the risk of cannibalizing existing revenues, as is often the case with promotions or
personalized incentives.

The standard approach to targeting-based experimentation in marketing — often referred to
as “test-then-learn” —typically follows three steps: (1) firms randomly sample customers to form
experimental groups, (2) estimate the conditional average treatment effects (CATEs) (or, in some
cases, estimate directly a policy based on those predicted CATEs), and (3) apply a decision rule
to target remaining customers based on the predicted CATEs (e.g., Lemmens and Gupta 2020;
Ellickson et al. 2022; Huang and Ascarza 2024). While this approach is statistically sound, the
sampling strategy in the first step is typically designed to ensure representativeness and to reduce
estimation error uniformly across the population — characteristics that are well-desired when the
objective is to estimate the treatment effects. However, the firm’s ultimate objective is not to pre-
cisely estimate CATEs for its customers, but rather to maximize profitability (or any other outcome
of interest) through effective targeting. In other words, this sampling strategy may be misaligned
with the firm’s objective.

This misalignment can lead firms to allocate experimental resources to customers whose out-
comes are largely irrelevant for determining optimal targeting policies, while undersampling
those whose data could significantly impact profitability. In turn, firms may deploy targeting
policies that are statistically sound but economically suboptimal. Recent research has begun
to distinguish between predictive accuracy and decision quality in marketing experimentation
(Fernandez-Loria and Provost 2022), but questions remain about how to design experiments that
prioritize the right customers for learning optimal targeting policies.

In this paper, we build on ideas from adaptive experimentation, active learning, and decision-
aware learning to propose a novel approach that explicitly aligns the firm’s profit-maximizing
objective with its sampling strategy — we term this policy-aware experimentation. Specifically, we

introduce a sequential experimental design guided by a profit-based sampling criterion — expected



profit loss (EPL) —which prioritizes customers whose estimation errors are most likely to distort
targeting decisions and reduce profitability. We theoretically show that the EPL approach achieves
near-optimality with a provable performance guarantee, and develop an estimation strategy lever-
aging the power of Bayesian inference for uncertainty quantification based on the Causal Forest
framework (Wager and Athey 2018; Athey et al. 2019b). By sampling the most consequential cus-
tomers more intensively, our method minimizes prediction errors in treatment effect estimation
where they matter most for targeting profitability.

We evaluate the benefits of policy-aware experimentation in two real-world applications—a
telecommunications reactivation campaign and a Starbucks promotional offer —as well as ex-
tensive simulation studies. We empirically demonstrate that our method yields more profitable
targeting policies than conventional sampling designs, including standard test-then-learn, uncer-
tainty sampling, and a leading adaptive design (e.g., Kato et al. 2024). Across these empirical
settings, our approach improves profitability by 5% to 10% relative to standard methods, and
achieves comparable outcomes with up to 80% fewer experimental samples. These results high-
light both the economic relevance and the sample efficiency of our method, especially in settings
where experimental budgets are limited.

These gains are most pronounced in settings where only a small fraction of customers are
positioned near the decision threshold. Our method’s advantage over alternative sampling strate-
gies arises in settings where there is misalighment between intervention costs and the distribution
of customer responsiveness, specifically when: (1) the intervention is broadly harmful (e.g., As-
carza et al. 2016); (2) the intervention is costly with uncertain returns (e.g., Lemmens and Gupta
2020; Simester et al. 2022); or (3) the intervention risks cannibalizing revenues that would have
occurred naturally (e.g. Anderson and Simester 2004; Ascarza 2018; Yang et al. 2023). Finally, we
show that our sequential sampling method maintains its effectiveness in a simplified two-stage
design, reducing both practical and technical barriers to implementation.

This research makes three key contributions. First, we introduce a new sampling criterion,
expected profit loss (EPL), that theoretically aligns with the firm’s profit-maximizing objective
and achieves near-optimality. Second, we demonstrate that a policy-aware experimental design
can substantially improve targeting outcomes even without increasing sample size. Third, we
provide a practical and managerially relevant solution that allows firms to conduct more efficient

experiments by strategically focusing on the most consequential customers.



2. Problem Formulation

Firms aiming to optimize marketing targeting decisions often rely on predictions of how individ-
ual customers will respond to an intervention. However, not all customers contribute equally to
learning an effective targeting policy. Some are more consequential than others, particularly those
for whom small errors in prediction can translate into large differences in profitability.

Consider a firm that is deciding whether to send a $2 coupon to each customer. The optimal
decision rule would be to target only customers whose incremental spending from receiving the
coupon exceeds $2. In practice, however, the true incremental spending — often referred to as the
conditional average treatment effect (CATE) —is not observed and must be estimated from data.
As aresult, targeting decisions are based on predictions, which inevitably include prediction error.

To illustrate the implications of this error, consider three customers, A, B, and C, in Figure 1,
who should be targeted (as their true CATE is above the decision threshold). The three customers
also have the same prediction error. For customer C, whose actual incremental spending is sig-
nificantly above $2 (or, more broadly, any customer whose true CATE is far from the decision
threshold), moderate errors in CATE estimation are relatively inconsequential, as the firm can still

make the correct targeting decision despite some degree of error.
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Figure 1: Differential Impact of Prediction Errors on Targeting Profitability
Customers A, B, and C have identical prediction errors, but their profit implications differ: errors matter most when true
CATE is near the threshold and profitability is high.

Conversely, for customers A and B, whose incremental spending is close to $2 (i.e., whose
true CATEs are near the decision threshold), even small prediction errors can lead to mistargeting.

Importantly, the impact of mistargeting these two customers differs in terms of profitability. Mis-



targeting customer A has minimal effect because the profit earned by the company from customer
A remains nearly unchanged regardless of whether they are targeted. By contrast, mistargeting
customer B leads to a notable profit loss, as their true incremental spending (CATE) is actually
greater than $2.

In general, Figure 1 highlights a key insight: when firms rely on CATE estimates to deploy
targeted policies, not all customers contribute equally to decision quality. In particular, greater
attention should be directed toward customers for whom prediction errors are most consequen-
tial for profitability. Intuitively, these are the customers whose true CATEs lie near —but do not

precisely coincide with —the decision threshold.

2.1. Formal Setup

To formalize this problem, we consider a setting where each customer i is described by a vector
of pre-treatment covariates X; and can be assigned to a binary treatment W; € {0,1}, with W; =1
indicating exposure to the marketing intervention and W; = 0 representing the control condition.
The potential outcomes under treatment and control are Y;(1) and Y;(0), respectively, and the

observed outcome is Y; = Y;(W;).

Firm’s objective The firm seeks to develop a targeting policy that, based on the observed covari-
ates X;, assigns each customer to treatment or control in order to maximize expected profitability.

This objective leads to an optimal decision rule 77*(-) : X — {0, 1} defined as:

7 (X;) = argmax Ex([Yi(0) - (1 — 7r(X;)) + (Yi(1) — c(X3)) - 72(Xi) [X4]
profit w/o treatment profit w/ treatment
= arg max Ex[Y;(0)[Xi] + (E[(Yi(1) = Yi(0))[Xi] —¢(X;)) - 72 (X;) (1)
CATE
= argmax Ex[Y;(0)|X;] + (T(X;) — c(Xi)l-r[(Xi),

~—
incremental profit

where

T(X;) = Ex[Y;(1) — Y;(0)[Xj]

is the CATE, or the expected incremental impact of the intervention conditional on covariates X;.!

IThe expectation here is taken with respect to the covariate distribution of the firm’s customer base.



As Equation (1) shows, the firm’s decision rule depends solely on the incremental profit from
the intervention; that is, the difference between the CATE and the cost of treatment. Therefore, if

the firm had access to the true CATE, the optimal targeting decision would be:

™ (X;) = H1(Xi) > c(Xi)}- (2)

Firm’s inference problem In practice, however, the true CATE is never observed, as for each
customer we see only one potential outcome (Holland 1986). Instead, firms must infer it from
data. The standard approach involves conducting a randomized experiment in which a subset
of customers S sampled from the firm’s customer base Z is randomly assigned to treatment or
control. Using the outcomes from this experimental sample, the firm estimates a CATE model,

which enables them to predict the CATE for any new customer i, T5(X;) and construct a policy:
fis(Xi) = {Ts(X;) > c¢(Xi) }. 3)

This formalization highlights several points. First, targeting decisions are based on estimated
CATEs from the experimental sample S, where prediction errors are inevitable due to learning
from finite samples. As a result, the learned policy 7ts will coincide with the optimal policy 7*
only when estimation is sufficiently accurate. Second, since the policy 7t is implemented via a
threshold rule — treating only when the estimated CATE exceeds the intervention cost — the con-
sequences of prediction errors in T5(X;) are non-linear and vary across customers. Third, the prof-
itability impact of these errors depends not only on whether a customer is mistargeted but also
on how profitable that customer would have been if treated correctly (i.e., their opportunity cost).
Mistargeting high-value customers leads to disproportionately large losses in potential profits.

Taken together, the firm’s ability to make profitable targeting decisions hinges on the compo-
sition of the experimental sample S, which in turn affects the type and magnitude of prediction
errors in T5(X;). This dependence becomes particularly consequential when the experimental sam-
ple size is limited and estimation uncertainty is high, as is often the case in marketing settings. In

such cases, who the firm samples can play a critical role in the profitability of the resulting targeting

policy.



Policy-Aware Experimentation This leads to the central question we address: how should firms
collect experimental samples in a way that improves the profitability of the resulting targeting
policy?

We formalize that objective as, given a fixed number of customers N to be part of the experi-
mental sample S, the firm aims to choose a sample §* such that the targeting policy 75 estimated
from it maximizes the firm’s expected profit when deployed on future customers with the same
distribution as Z:2

S* = Seﬁgist(S) 4)

f(S) =E[Yi(0) + (T(Xi) — c(X;)) - 7As(Xi)],

where the expectation is taken with respect to both the covariate distribution of firm’s customer
base and the sampling distribution of 7ts.

Framing the sampling problem as a pure combinatorial optimization — selecting the most in-
formative subset of customers from a large population — quickly becomes infeasible, as evaluating
all (‘I\I,S‘) possible combinations is computationally infeasible in practice. This challenge calls for a
more principled and scalable solution. Building on the economic intuition developed above, we
introduce a tractable and theoretically grounded approach that prioritizes customers whose treat-
ment effect estimation errors are most likely to influence targeting profitability. Specifically, we
propose a sequential experimental design guided by a novel sampling criterion, which we term
expected profit loss (EPL). By directing experimental resources toward consequential customers, EPL
enables firms to strategically align data collection with their profit-maximization objectives.

Building on this foundation, the remainder of the paper introduces and evaluates our policy-
aware experimentation framework. We begin with a review of related work. Section 4 formalizes
the expected profit loss (EPL) criterion and presents our proposed sequential sampling algorithm.
Section 5 uses simulation studies to benchmark performance and illustrate the economic gains
from our approach. Section 6 offers empirical validation through two empirical applications in
customer reactivation and mobile promotions. Finally, Section 7 concludes with a discussion of

practical implications and avenues for future research.

2This assumes no concept drift (stable treatment effects) and no covariate shift (stable customer characteristics distri-
bution) between the experimental period and deployment period, consistent with standard literature assumptions (e.g.
Simester et al. 2020; Huang et al. 2024).



3. Related Literature

This paper relates and connects four main streams of literature: targeting and personalization,

experimental design, active learning, and decision-aware learning.

Targeting and personalization. A large body of research has explored how firms can use customer-
level data to personalize marketing interventions (e.g., Ascarza 2018; Simester et al. 2020; Ellickson
et al. 2022; Yang et al. 2023; Huang and Ascarza 2024; Hitsch et al. 2024). Recent work has empha-
sized the importance of estimating heterogeneous treatment effects and developing policy learn-
ing methods that directly map customer characteristics to targeting decisions (Zhao et al. 2012;
Athey and Wager 2021, e.g.). These approaches shift focus from estimating conditional average
treatment effects (CATESs) to learning decision rules that maximize business outcomes. However,
while these methods align the inference stage with the firm’s objective, they typically rely on exper-
imental data collected using generic sampling strategies. To the best of our knowledge, prior work
has not incorporated the firm’s business objective into the experimental design stage itself, leaving

a critical misalighment between how data are collected and how they are ultimately used.

Experimental design. Our work relates to the broader experimental design literature, which
we divide into two main streams. The first focuses on minimizing estimation uncertainty, typi-
cally through classical parametric designs such as A- and D-optimality (e.g., Kiefer and Wolfowitz
1959; Fontaine et al. 2020), or through optimal experimental sizing and allocation across customer
segments (e.g., Feit and Berman 2019; Simester et al. 2022; Hu et al. 2024). The latter includes
the literature on adaptive experiments, which draws from multi-armed bandits (e.g., Schwartz
et al. 2017; Misra et al. 2019; Waisman et al. 2024) and best arm identification (BAI) methods (e.g.,
Bubeck et al. 2010; Kasy and Sautmann 2021; Kato et al. 2024). While our sequential design is
consistent with this literature, our approach shifts the focus from adaptively assigning treatment
conditions to selecting whom to sample in the first place, in order to improve downstream decision
quality. Moreover, we show that our method remains effective even in a simple two-stage design,

providing a more practical and scalable alternative to fully adaptive frameworks.

Active learning. Third, our research is closely related to the active learning literature, which
develops acquisition strategies to reduce the cost of data collection (e.g., Fu et al. 2013; Shankara-

narayana 2023). While most of this work focuses on improving predictive accuracy for supervised



learning tasks, more recent efforts have turned to treatment effect estimation (e.g., Puha et al.
2020; Jesson et al. 2022) and decision-making tasks (e.g., Sundin et al. 2019; Liu et al. 2023). Our
approach builds on this stream by proposing a new acquisition function —expected profit loss
(EPL) —that prioritizes customers whose prediction errors are most consequential for targeting
profitability. In doing so, we connect active learning with firm-level objectives in a policy-driven

context.

Decision-aware learning. Finally, this paper contributes to the literature on decision-aware
learning, which seeks to integrate prediction with downstream optimization in the context of the
predict-then-optimize framework (e.g., Wilder et al. 2019; Kallus and Mao 2023). While much of
this literature focuses on refining predictive models using observed outcomes to improve decision
quality (e.g., Lemmens and Gupta 2020; Chung et al. 2022), our work makes two important ad-
vancements. First, we move attention to an earlier stage: the design of the experiment itself. Sec-
ond, we address the more challenging context of counterfactual reasoning, where the outcomes of
interest — CATEs —are unobserved. In doing so, we offer a novel perspective on aligning experi-
mental design with business objectives in marketing.

In sum, our approach integrates ideas from active learning, adaptive experimentation, and
decision-aware learning to create a unified framework that aligns the firm’s business objective
with the entire empirical strategy —from how data are collected to how targeting policies are
ultimately deployed. By embedding profit considerations into the sampling stage, we offer a
decision-aware perspective that enhances both the efficiency and effectiveness of marketing ex-

perimentation for policy learning.

4. Methodology

This section introduces our methodology for selecting an experimental sample, S, that enhances
policy quality. In particular, we introduce the expected profit loss criterion (EPL), which quantifies
how prediction errors in CATE estimation impact firm’s profitability. We provide theoretical guar-
antees for using this criterion as the basis for the firm’s sampling strategy, establishing a strong
foundation for its use in policy-aware experimentation.

To implement EPL sampling in practice, we develop two complementary strategies. First, we

develop an estimation approach for EPL that leverages Bayesian inference for uncertainty quantifi-



cation within a Causal Forest framework (Athey et al. 2019b), providing a principled and scalable
method to identify high-impact customers without prior knowledge of treatment effects. Second,
we propose a sequential experimental design that begins with uniform sampling and then adaptively
reallocates experimental resources toward individuals with the highest EPL estimates. This dy-
namic sampling strategy concentrates learning on the most economically relevant segments of the
population.

We conclude the section by discussing key implementation considerations and the practical

advantages of our proposed design.

4.1. Near-Optimal Sampling Strategy: The Expected Profit Loss (EPL) Sampling
Approach

We begin by formally characterizing consequential customers—whose prediction errors are most
harmful for profitability and thus merit greater attention during experimentation. This character-

ization is the basis for our expected profit loss (EPL) formulation.

4.1.1. Consequential Customers and Expected Profit Loss

Building on the intuition from Figure 1, consider the two illustrative scenarios depicted in Fig-
ure 2. In the left panel, the customer’s true CATE exceeds the intervention cost by a large margin,
ie., T(Xj) — c¢(X;) > M. In this case, even a moderate prediction error ¢ is unlikely to alter the tar-
geting decision. By contrast, the right panel depicts a customer whose true CATE lies close to the
threshold, i.e., T(X;) — ¢(X;) > m, where a small estimation error can easily lead to mistargeting.

Importantly, the probability of mistargeting alone does not fully capture a customer’s contri-
bution to decision quality. The associated profit loss incurred when such mistargeting occurs (as
highlighted in Figure 2b) is equally critical. Customers whose CATEs are nearly equal to the inter-
vention cost (i.e., T(X;) =~ c¢(X;)) yield minimal profit gain or loss regardless of whether they are
treated. In contrast, the most meaningful profit losses arise from customers whose CATE deviates
substantially from the threshold but are still misclassified due to estimation error.

Therefore, we characterize consequential customers as individuals who satisfy two criteria: (1)

a high probability of mistargeting, P (7(X;) # 7*(X;)) = E [1{7(X;) # 7*(X;)}] , and (ii) a non-
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Figure 2: Differential Impact of Prediction Error ¢ on Targeting Accuracy

trivial absolute profit loss: |7(X;) — ¢(X;)| , and formally define expected profit loss (EPL) as:

((Xi) =Bz |[|T(X;) — (X)) - H{AX) # 7T (Xi) } |,

profit loss mistargeting prob.

where the expectation is taken with respect to the sampling distribution of 7t. This quantity should
guide the firm to sample consequential customers for policy-aware experimentation.

To operationalize this approach, firms must rely on observed data to estimate ¢(X;). This
requires an initial experimental sample, which we denote as D. In the next section, we provide
theoretical guarantees for the EPL-based sampling strategy, assuming the existence of an initial
sample. In Section 4.2 we then outline how firms can construct this initial sample, estimate the EPL
function in practice through sequential sampling, and ultimately prioritize experimental resources

toward consequential customers.

4.1.2. Theoretical Guarantee of EPL Sampling

The following proposition shows that allocating experimental resources based on EPL yields a
strong approximation to the optimal sampling strategy such that the targeting policy estimated
from it maximizes the firm’s expected profit when deployed on future customers.

Suppose the firm has collected an initial experimental dataset D by randomly sampling cus-
tomers and assigning treatments. This dataset enables estimation of CATEs and EPLs, which

guides subsequent sampling decisions.

11



Proposition 1 (Near-Optimality of Expected Profit Loss Sampling). Let Z denote the set of customers
available for experimentation. Let Ng denote the desired total sample size (with Ng > |D|). Under suitable
regularity conditions, for any sufficiently large initial sample D, a greedy algorithm that iteratively selects

k = Ns — |D| additional customers with the highest marginal expected profit loss,
ls(Xi) = Ballt(X;) — c(Xi)| - {75 (X) # 77 (X;) }] (5)

achieves a (1 — 1)=-approximation to the globally optimal sampling strategy, i.e.,

1
f(DUSE) > <1 — e) f(DUSY)
where S§ denotes the k customers selected by the greedy algorithm and S; denotes the optimal set of k
customers such that the targeting policy 7tg estimated from it maximizes the firm'’s expected profit when
deployed on future customers with the same distribution as Z. That is,
S¢ = E [Y;(0 Xi) —c(X;)) - 7 Xi)], 6
(=g max  E[Y(0) + (2(X) ~e(X)) - Fous, () ©)

where the expectation is taken with respect to both the covariate distribution of firm'’s customer base and the

sampling distribution of 7tg.
Proof. See Web Appendix B. O

Proposition 1 demonstrates that the expected profit loss (EPL) sampling strategy achieves
near-optimality by attaining a (1 — %)-approximation to the globally optimal sampling policy de-
fined in Equation (4). This result confirms that selecting customers with the highest EPLs aligns
experimental design with the firm’s profit-maximizing objective, offering theoretical performance
guarantees of our proposed approach. Note that the requirement for a sufficiently large initial
sample set D in Proposition 1 is not a constraint in practice, as such a sample is already needed to
estimate EPLs —an implementation step we describe next in Section 4.2. This initial data collec-
tion simultaneously satisfies the theoretical condition and enables estimation of EPLs.

While Proposition 1 establishes strong guarantees for EPL-based sampling, applying this strat-
egy in practice requires estimating EPLs without observing true CATEs —a challenge we address

in the next section.
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4.2. Practical Implementation: A Sequential Experimental Desigh with EPL Sam-
pling

While the EPL sampling strategy provides a theoretically grounded framework for optimizing
firm’s profitability, its implementation entails a major challenge due to the fundamental problem
of causal inference. Specifically, the computation of ¢(X;) depends on the true CATE, 7(X;), and
the corresponding optimal decision 77*(X;), both of which are unknown to the firm. As such,
¢(X;) cannot be used directly as a sampling criterion in practice. Instead, firms must estimate an
approximation, which we denote @(Xi), to guide the sampling process.

In this section, we tackle this challenge by developing an estimation strategy that enables ac-
curate identification of customers with the highest EPL, even without direct observation of true
CATEs. As discussed earlier this requires an initial experimental sample D that is sufficiently large
and representative, which is rarely the case. To address this challenge, we adopt a sequential de-
sign that begins with a small pilot sample and progressively refines EPL estimates as new data are
collected. This structure enables the algorithm to improve its prioritization of consequential cus-
tomers over time, offering a flexible and scalable path toward approximating the theoretical ideal.
Together, these components provide a practical and scalable implementation of our theoretically

founded sampling strategy.

4.2.1. Estimating Expected Profit Loss (EPL)

We present our estimation strategy for EPL, which enables firms to identify consequential cus-
tomers without directly observing the true CATEs. Our approach leverages Bayesian inference for
uncertainty quantification, operationalized through the Causal Forest model (Wager and Athey
2018; Athey et al. 2019b) to avoid restrictive parametric assumptions. Specifically, we use the en-
semble of trees generated by the Causal Forest to approximate the posterior predictive distribution
of the CATE, following the well-established result that bootstrapped trees approximate a posterior
under a noninformative prior (Hastie et al. 2009).3 Each tree, trained on a different bootstrapped
subsample, yields a distinct prediction of the treatment effect for a given customer. We treat these
tree-level predictions as samples from the posterior distribution, forming an empirical approxi-

mation that captures model uncertainty. This uncertainty-aware view of CATE estimation allows

3We chose Causal Forest due to its practical implementation and its local property required in our theoretical anal-
ysis. Firms can implement EPL estimation using grf in R or econML in Python.

13



us to construct an EPL score that quantifies how much profit a firm stands to lose from potentially
mistargeting a customer.

We implement this approach by first using the previously collected dataset D to train a Causal
Forest model. For each customer i outside the training set, we compute the posterior mean of
the CATE, 1p(X;), and treat the predictions from each tree j in the ensemble as draws "Z'é(XZ-),
forming an empirical approximation of the posterior predictive distribution pp(%(X;) | D). This
distribution enables us to assess the likelihood that the estimated targeting decision, 7ip(X;) =
1{tp(X;) > ¢(X;)}, deviates from the optimal decision implied by each draw.

We then define the EPL for customer i as the expected profit loss from potential deviations
between the estimated and optimal targeting decisions, integrated over the posterior predictive
distribution:

Ip(X;) = / 0-W7ap(X;) = (Xi)} + |7A(Xi) — o(X)[H{7p(X;) # 7(X;)} pp(T(X;)|D)dT
profit loss with no deviation profit loss with deviation

:/|f(XZ~) — c(X)|[H{7tp(X;) # A(X;)} pp(T(Xi)|D)d7,

profit loss

)

where 7(X;) is a draw from the posterior predictive distribution and 77(X;) = 1{T(X;) > ¢(X;)}.

For each draw, we determine whether the implied targeting decision differs from the esti-
mated one and the corresponding profit loss ]f{)(Xi) — (X)) |H{Ap(Xi) # ﬁ%(Xi)} for each tree.
We then approximate the integral in Equation (7) by averaging the profit losses fé (Xi) across all |
trees to obtain the EPL estimate, #p(X;). The pseudo-code for the estimation algorithm is outlined
in Algorithm 1.

Intuitively, our estimated EPL closely approximates the true EPL ranking. When the true
CATE t(X;) is far from the decision threshold, the posterior mean ¥p(X;) and most draws from
the posterior predictive distribution are likely to fall on the same side of the threshold. Thus,
few draws produce a targeting decision different from 7tp(X;), yielding low estimated EPL that
correctly reflects low true EPL. When the true CATE is very close to the threshold, the posterior
distribution concentrates around the threshold, making the profit loss |7(X;) — ¢(X;)| small for
most draws and producing modest estimated EPL that again aligns with modest true EPL. The
highest estimated EPL values arise when the true CATE is moderately distant from the thresh-

old—creating substantial potential profit loss—while posterior uncertainty generates many draws

14



that cross the threshold and produce opposite targeting decisions. These customers have both high

true and estimated EPL, ensuring our algorithm prioritizes the right customers.

Algorithm 1 Estimating Expected Profit Loss

Input: Experimental data D; Number of trees | € IN
Output: 7p(X;)
Data: D
Train a Causal Forest model on D and obtain 7p(X;) = 1{Tp(X;) > ¢(X;) }.
forj=1,2,..,]do
]

Determine the optimal targeting decision associated with the prediction Té (Xi):

end for
Calculate the EPL estimate by averaging the profit losses associated with the draws across all |
trees:

Return: EPL estimate /p (Xi)

4.2.2. A Sequential Experimental Design with Expected Profit Loss Sampling

With an estimation procedure for EPL in place, we next describe how these scores can be op-
erationalized to guide sequential experimentation. As described in Section 4.2.1, EPL estimation
requires experimental data, creating a circular dependency between identifying consequential cus-
tomers and collecting the data needed to do so. To address this challenge, we propose a multi-
stage sequential design that begins with an initial randomized batch of customers —forming a
dataset we previously denoted D —used to train a preliminary CATE model. The resulting poste-
rior from this model enables the estimation of EPL scores, which in turn guides the prioritization
of customers in subsequent experimental batches.

Importantly, as more data is collected, the accuracy of EPL estimates improves, allowing the
procedure to increasingly focus on customers whose mistargeting would lead to substantial profit
loss. While a two-stage design can suffice, a multi-stage sequential approach can offer superior

performance by allowing for more accurate sampling of consequential customers and progressive
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refinement of customer prioritization. In particular, it enables a more effective trade-off between
gathering information to improve EPL estimates and focusing resources on customers with high
estimated EPL. We formalize the multi-stage sequential procedure below and treat the two-stage

design as a simplified special case.

Sequential procedure Given a customer base 7 and a pre-determined experimental size Ng
(with Ns < |Z]), we obtain the experiment sample S by combining B sequential batches S =
UP_,Sp. Each batch b € {1,2,..., B} contains |S;| = 1, customers such that YP_ n, = Ng.* In the
first batch (b = 1), we randomly sample |S;| = n; customers from Z and assign them randomly
to the two treatment arms W; € {0,1}. After observing their outcomes, we use this data S; to
estimate EPLs for the remaining customers.” In each subsequent batch b = 2,..., B, we select
|Sp| = np customers with the highest estimated EPLs among those not yet sampled, i.e., from
7\ S where $"~! = u]?;}sj, and again assign treatments at random. This process continues
until the final batch B. Once outcomes are observed from all B batches, we re-estimate a CATE
model on the full experimental dataset S = UZ_|S,,.

Crucially, our design differs from commonly used bandit or best-arm identification strategies
(e.g., Thompson Sampling (Schwartz et al. 2017; Jain et al. 2024) or UCB (Misra et al. 2019)) that
adaptively assign treatments. Here, treatment assignment W is always random; what differs with
respect to standard practice is which customers are prioritized for inclusion in the experiment.

Pseudocode for the full procedure is provided in Algorithm 2.
Assumptions In line with prior work, we impose the following assumptions across waves of
the experiment:

Assumption 1. (Stable Unit Treatment Value Assumption, SUTVA) The potential outcomes for customer i

depend solely on their own treatment assignment, not on the assignment of any other customer i'. Formally,

“We focus on scenarios where the firm has access to a fixed customer base, excluding cases with streaming arrivals.
This assumption reflects many marketing applications such as retention (e.g. Ascarza 2018; Lemmens and Gupta 2020;
Yang et al. 2023) and catalog mailings (e.g. Hitsch et al. 2024; Simester et al. 2020).

5This initial batch S; corresponds to the dataset D introduced in Section 4.2.1.
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Algorithm 2 The Sequential Experimental Design with Expected Profit Loss Sampling

Customer Base: 7
Input: Experimental size Ng; Number of batches B; Number of samples allocated to each batch
{nb}l’le with 25:1 ny = Ng
Output: Targeting Decision 7ts
forb=1,2,..,Bdo
if b=1 then
Randomly sample 71 customers from 7
Randomly assign each sampled customer i to the two treatment arms W; € {0,1}
Observe the outcomes of the sampled customers Y;
else
For each unsampled customer i ¢ S'~! = uj’;}sj, estimate the EPL /g1 (X;) with the

data collected in previous b — 1 batches gb-1 (Algorithm 1)
Select 11, customers with the highest EPL estimates 71 (X;)
Randomly assign each customer i in this batch to the two treatment arms W; € {0,1}
Observe the outcomes of the sampled customers Y;
end if
end for
Estimate a CATE model with the experimental data S
Derive the final targeting decision leveraging the CATE predictions:

fige(x) = 1{Tgs(x) > c(x)}.

Return: Targeting decision 7tgs

Assumption 2. (Stability) The distribution of potential outcomes for any customer i is invariant across
time. That is, for all t # t/,
Ex[Y] (W) |Xi] = Ex[Y{ (W;)|Xi],

where Y!(W;) and Y!' (W;) denote the potential outcomes at times t and ', respectively.

Assumption 3. (Unconfoundedness) For each customer i, treatment assignment is independent of unob-

served potential outcomes, conditional on covariates:
(Yi(0),Yi(1)) LL Wi | X;.

Assumption 4. (Overlap) Each customer has a non-zero probability of receiving either treatment condi-
tion:

O<Pr(W;=1|X;=x) <1, Vx

Assumption 1 rules out spillover effects across customers, while Assumption 2 ensures that

treatment effects remain stable over the experimental horizon. Together, these conditions imply
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that customers identified as high-priority targets early on will remain so in subsequent waves,
facilitating efficient adaptive allocation.

Assumptions 3 and 4 are automatically satisfied given that each customer in the experiment
is randomly assigned to one of the two treatment arms, which guarantees that each experimental
wave yields consistent CATE estimates for 7(X;).® These estimates form the basis for the final

targeting policy outlined in Section 2.

Summary Our sequential procedure begins with a pilot experiment of size 11, which is used to
train a flexible model of heterogeneous treatment effects. This initial step mirrors the conventional
“test-then-learn” paradigm (e.g., Yoganarasimhan et al. 2023; Huang and Ascarza 2024), with the
key distinction that only the pilot stage employs uniform sampling. At each subsequent wave
b=2,...,B, the firm (i) computes the EPL estimates for each customer based on data collected in
previous batches; (ii) selects 1, customers with the highest estimated EPLs (i.e., those associated
with the highest stepwise regret); (iii) assigns the selected customers to treatment or control ran-
domly and observes their outcomes; and (iv) updates the CATE model using the newly accrued
data before proceeding to the next wave. Because each wave prioritizes individuals for whom
errors in T(X;) estimation are most economically consequential, the design adaptively allocates

experimental resources to customers with the greatest value of information.

4.3. Implementation Considerations

Implementing our proposed sequential experimental design involves two key design decisions:
(1) determining the number of batches in the experiment, and (2) allocating samples across these
batches. In this section, we offer practical guidance to help firms navigate these design choices,
drawing on extensive simulation studies and empirical analyses that inform the robustness and

effectiveness of our recommendations.

Number of batches. Firms face a trade-off between targeting precision and operational feasi-
bility when choosing the number of batches, B. Increasing B enables more frequent updates of
EPL estimates and sharper identification of consequential customers. However, it also extends

the experimental timeline and introduces operational complexity. We recommend setting B to

®Note that under this design, the sample S may not be representative of the population, and hence estimates of the
average treatment effect (ATE) may be biased. However, standard reweighting techniques can be applied to recover
unbiased ATE estimates from non-representative samples.
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the maximum number feasible given the firm’s cadence of outcome measurement. For example,
in settings where outcomes are observed quickly (e.g., digital engagement), a design with 3-5
batches may be practical. In contrast, when outcomes require longer observation windows (e.g.,
revenue after a promotion), a two-stage design may be more suitable. To add flexibility, firms
can adopt an early stopping rule— terminating the experiment once EPL estimates stabilize or fall

below a pre-specified threshold.

Batch size allocation. Once B is set, the firm must allocate its experimental budget across
batches. This introduces another trade-off: allocating more samples to earlier batches improves
EPL estimation, while saving samples for later batches preserves flexibility for targeting high-EPL
customers. A decreasing batch size configuration —in which earlier batches receive more samples —
can improve estimation accuracy without sacrificing performance. However, our simulation (Ap-
pendix C.2.1) and empirical results (Appendix D.4.1) suggest that both constant and decreasing
allocations perform similarly in practice. We encourage firms to choose the scheme that aligns
with their operational rhythm and technical infrastructure while ensuring adequate initial sample

size.

When to use two-stage vs. multi-stage designs. A key practical challenge in adaptive ex-
perimentation is the time lag between treatment and observable outcomes. This becomes partic-
ularly salient when the desired outcomes (e.g., purchases, revenue) take days or weeks to mani-
fest.” Delays can make a fully adaptive design slow or operationally burdensome, especially when
combined with engineering costs related to frequent model updates (Hadad et al. 2021). In such
settings, a simplified two-stage version of our approach may be more suitable.

In a two-stage design, the experiment is split into two (potentially unequal) groups. The first-
stage sample is used to estimate EPLs, and the second-stage sample is drawn based on these
estimates. This simplification reduces complexity and shortens timelines, while retaining most of
the performance benefits of a full multi-stage design (see Sections 5 and 6).

The two-stage design introduces a single trade-off: the first-stage sample must be large enough
to generate accurate EPL estimates, while leaving enough customers in the second stage to act on

those estimates. We explore this trade-off empirically in Appendix C.2.2 and D.4.2.

’One may argue that this can be addressed by using intermediate outcomes as surrogates for delayed feed-
back (Athey et al. 2019a; Yang et al. 2023; Huang and Ascarza 2024). However, these proxies may themselves require
substantial time to observe post-intervention.
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5. Simulation

Before testing our approach on real data, we perform a series of simulation studies to achieve
two main objectives. First, we examine the performance of our method in learning the profit-
maximizing targeting policy across various scenarios, identifying conditions under which our ap-
proach provides the greatest benefits. We evaluate both the multi-stage and the two-stage design,
and find that the latter maintaining strong performance while offering a more practical alternative
to fully adaptive design, as discussed in Section 4.3. Second, we leverage the advantages of syn-
thetic data where true CATE is known to evaluate the ability of our approach to accurately identify
customers whose prediction errors in CATE estimation have the greatest impact onprofitability, as

illustrated in Section 4.1.1.

5.1. Simulation Setup

We consider the scenario where a firm aims to develop a targeting policy that maximizes the
profitability of a marketing intervention. The firm first learns the targeting policy through exper-
imentation on a subset of customers, and subsequently implements the learned policy on future
customers. We assume that the impact of the (binary) intervention on customers is heterogeneous
and follows a normal distribution centered at 1, meaning on average, the intervention has a posi-
tive effect on consumers.®

Specifically, we generate a customer base Z and an evaluation set D,,,; with a binary treatment

W; € {0,1} according to the following data generating process:
Y =1(Xi) - Wi+ Xia - Xis + e
where

T(X;) = Xi1 - Xip +05- Xi3 + 1,
e; ~ N(O,l),
X ~N(0,1), je€{1,35}

Xij ~ Bernoulli(0.5), j € {2,4}.

This data generating process follows the 1 and 2 assumptions.

8We also explore alternative scenarios in which the CATE distribution is bimodal, featuring two segments of equal
or unequal proportions. The results are available in Web Appendix C.3.
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We assume that the marketing intervention incurs a cost, ¢, which represents the decision
threshold. In our simulation studies, we hold the (simulated) CATE distribution constant, with a
mode and median equal to 1, and vary the intervention cost with ¢ € {0,1,2,3} to examine our

approach’s performance across different scenarios (see Figure 3 for an illustration).”

Figure 3: CATE Distribution and Intervention Costs
Each dashed line corresponds to a different intervention cost c. ¢ = 1 corresponds to the mode of the CATE distribution.
c = 3 represents the maximum deviation from the mode. c = 0 and c = 2 are symmetrically positioned around the mode.

Specifically, ¢ = 0 represents scenarios with minimal intervention costs and positive impact;
while such scenarios are rare in practice, an example might be an email campaign where the objec-
tive is simply for recipients to open the email. The case c = 1 represents scenarios where customers
are predominantly clustered around the decision threshold. By contrast, c = 3 describes situations
where only a few customers are near the decision threshold. This latter case is common in practice,
either because treatment effects are generally low across customers or because intervention costs
are prohibitively high (e.g., Ascarza et al. 2016; Lemmens and Gupta 2020).

Additionally, because ¢ = 0 and ¢ = 2 are symmetrically positioned around the mode of the
CATE distribution (located at 1, making their distance to the mode equal), this setup allows us
to investigate whether our approach’s performance is influenced solely by the distance from the
decision threshold to the mode, or also by the direction relative to the mode (with ¢ = 0 below
and ¢ = 2 above). We also vary the experimental size (Ng) € {1k, 5k, 10k, 20k, 30k}) to assess

sample size efficiency.

9Alterna’cively, we could vary the CATE distribution itself, but because only the difference between CATE and cost
matters for the targeting decision, both approaches yield same insights.
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5.2. Experimental Designs for Comparison
5.2.1. Policy-Aware Experimentation

We examine two variants of our proposed policy-aware approach: one employing multiple batches,
with each batch comprising the same number of customers (in this case, 200 customers), and an-
other utilizing only two batches of varying size.!? In both cases, the total experimental size re-
mains constant; the only difference is the number of batches drawn, which has implications for
the number of times the researchers need to observe consumer outcomes and the number of times
the EPL sampling strategy is employed. This comparison enables us to evaluate the performance
differences between a more complex adaptive design and a simplified two-stage design, thereby

elucidating the potential trade-offs between implementation complexity and targeting efficacy.!!

5.2.2. Benchmarks

We compare our approach with three alternative experimental designs. The first is the test-then-
learn approach (Default) commonly employed in practice (e.g., Ascarza 2018; Yang et al. 2023;
Huang and Ascarza 2024). This method involves sampling customers with equal probability for
the experiment and assigning them to different treatment arms at random. In our simulation, we
assign the sampled customers to the two treatment arms with a probability of 0.5.

The second benchmark is the uncertainty sampling approach (Uncertainty) commonly used
in active learning (e.g., Burbidge et al. 2007; Shankaranarayana 2023). This approach focuses on

querying points with the highest estimation uncertainty:
Sy = argmax o (Tg-1(x))

where 0 (g -1(x)) denotes the standard deviation of the CATE estimate from previous batches.
We choose uncertainty sampling over classical A- and D-optimal designs (e.g. Kiefer and Wol-
fowitz 1959; Fontaine et al. 2020) for two key reasons. First, A- and D-optimal designs target
global parameters like average treatment effects, while our focus is on local heterogeneous effects

(CATEs). Second, these designs are tailored to parametric models, whereas uncertainty sampling

19Tn the main text, we employ equal-sized batches (200 samples each) following Waisman et al. (2024) for the multi-
stage design, with the number of batches varying by experimental size. In Appendix C.2.1, we evaluate alternative
allocation schemes under a fixed number of batches (10) across different experimental sizes: both a constant batch size
approach (where batch size varies with total experimental size) and a decreasing batch size configuration.

HFor the two-stage design, we investigate various proportions of customers  to be sampled in the first stage (r €
{0.5,0.7,0.9}) in Appendix C.2.2, aiming to examine the optimal two-step configuration for different scenarios.
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naturally accommodates local non-parametric estimators such as Causal Forest. This alignment
with our methodological framework makes uncertainty sampling a more appropriate benchmark
for evaluating our proposed approach.

The third benchmark is the state-of-the-art adaptive experimental design (Adaptive) proposed
by Kato et al. (2024). While most adaptive designs in the literature focus on different objectives
(e.g., balancing exploration and exploitation) or require strong parametric assumptions, Kato et al.
(2024) aims to estimate the most accurate targeting policy with limited parametric assumptions.
This alignment in objectives and assumptions makes it an ideal method for comparison with our
approach. Note that, by design, this adaptive approach determines treatment assignment deci-
sions for sampled customers rather than selecting which customers to include in the experiment.
Specifically, the Kato et al. (2024) approach assigns the customers sampled in batch b to different
treatment arms based on the following rule:

Ugb—l (x)
00y 1 () + 08 (%)

O—;b—l (x)
091 (%) + 031 (%)

Psb—l (Wi = 0|Xi = x) =

PSH(WI» = 1|Xi = x) =

w
where Ogh1

from the previous b — 1 batches.!? Intuitively, this approach prioritizes assigning customers to

(x) denotes the standard deviation of the potential outcomes Y;(W; = w) estimated

the treatment arm with greater uncertainty in expected outcomes, allowing the firm to reduce un-
certainty in customer responses and identify the most effective treatment for each customer more
accurately. This is in contrast to our approach, where we selectively sample the customers whose
prediction errors in CATE estimation have the most significant impact on the firm’s profitability,

and randomly assign them to different treatment conditions.

5.3. Evaluation Procedure

Each sampling strategy yields a targeting policy 7ts(X;), which we evaluate using a separate held-
out dataset, simulating future deployment of the learned policy. For each method, we perform
100 replications: in each replication, we run the experiment, estimate the CATE model, derive
the targeting policy, and assess its performance on the validation set. We then report the average

results across replications.

12T5 account for the adaptive nature of the experimental data, we follow Kato et al. (2024) and reweight the outcome
Y; for customer i sampled in batch b by Pgi-1 (W;|X;). See Web Appendix C.1 for implementation details.
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Specifically, we generate a customer base of Nz = 100,000 and a fixed evaluation set of
Neyvat = 10,000 customers, used across all replications. In each replication, we sample Ng cus-
tomers from the base to conduct the experiment, yielding experimental data S used to estimate
the CATE model. This model is then used to generate targeting decisions 7(-) for the evaluation
set Doyal-

We measure policy performance using the proportional profit gap (PPG), defined as:

YieDp (T(Xi) =€) - T (Xi) — Liep,,, (T(Xi) =€) - 7s(X;)
YieD, (T(Xi) =€) - 1(X3)

where 77%(-) denotes the true optimal policy based on the true CATE 7(-). The PPG captures the

PPG =

eval

relative loss in profit from using the estimated policy 7(-) instead of the optimal one. Lower

values indicate better performance.

5.4. Results
5.4.1. Profitability of Targeting Policies

Figure 4 shows the proportional profit gaps of the targeting policies learned by different exper-
imental designs across various intervention costs (¢ € {0,1,2,3}) and experimental sizes (Ng €
{1k, 5k, 10k, 20k, 30k }). Note that a smaller gap (indicating that the estimated policy is closer to
optimal) is better. Across all experimental sizes, EPL-based designs generally achieve lower profit
gaps than the three benchmarks, particularly when the intervention cost c lies in the tails of the
CATE distribution. These gains are most pronounced at smaller sample sizes (e.g., Ns = 1k or 5k),
where EPL more effectively concentrates learning on the most consequential customers. At larger
sample sizes, EPL performs comparably to the Uncertainty benchmark. This performance pattern
holds for both the multi-stage and the two-stage versions of our approach, with the latter offering
similar gains despite its simpler structure.

To evaluate performance independently of the proportional metric’s denominator, we also
report absolute profit gaps in Figure 5. This comparison helps isolate performance patterns, par-
ticularly the observed symmetry between ¢ = 0 and ¢ = 2.

The results reveal several insights. First, when the decision threshold deviates from the mode
of the CATE distribution (i.e., ¢ € {0,2,3}), our approach generally outperforms the three bench-
marks, particularly at lower sample sizes. The similar absolute profit gaps between ¢ = 0 and

¢ = 2 suggest that performance is primarily driven by the distance between the decision thresh-
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Figure 4: Proportional Profit Gaps of Different Experimental Designs
We report the average value of the proportional profit gap across 100 replications. Each line corresponds to an experimental
approach. Lower values indicate better performance.

old and the mode of the CATE distribution. ' In contrast, when the decision threshold aligns
with the mode of the CATE distribution (i.e,. ¢ = 1), our approach performs comparably to the
Default and Adaptive approaches and may underperform at small sample sizes (Ng < 10000). In
this case, random sampling naturally concentrates observations around the threshold, while our

method’s EPL estimates — still imprecise at low Ns—may lead to suboptimal prioritization. 4

13The proportional profit gap is calculated relative to the profit generated by the optimal policy. Because ¢ = 0 reflects
a costless intervention, the optimal policy yields higher overall profit compared to c = 2, where the intervention is more
costly. As a result, even when the absolute profit losses are similar, the proportional profit gap for ¢ = 0 appears smaller
due to the larger denominator. This distinction highlights why proportional and absolute metrics can tell different
stories.

14Notably, our approach generally outperforms uncertainty sampling across all scenarios, especially at smaller sam-
ple sizes (Ng < 10,000). This supports the notion that reducing uncertainty alone is insufficient, sampling should also
account for economic relevance.
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Figure 5: Profit Gaps of Different Experimental Designs
We report the average value of the profit gap (i.e., the difference between the incremental profit of 7t(X;) and that of the
optimal policy) across 100 replications. Each line corresponds to an experimental approach. Lower values indicate better

performance.

Beyond offering empirical validation, these results clarify when policy-aware experimentation
offers the most value. Specifically, when fewer customers lie near the targeting threshold, our ap-
proach enables firms to build more profitable policies. Such scenarios emerge when intervention
costs are misaligned with central patterns in responsiveness—especially when: (1) the interven-
tion is harmful for many customers (e.g., Ascarza et al. 2016), shifting treatment effects leftward
against a positive cost; (2) the intervention is expensive (e.g., mailings, service calls) and effective-
ness is low (e.g., Lemmens and Gupta 2020; Simester et al. 2022), pushing most treatment effects
toward zero with a positive threshold; or (3) the intervention risks cannibalizing natural revenue

(e.g., discounts or free goods) (e.g., Anderson and Simester 2004; Ailawadi et al. 2007; Ascarza
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2018; Yoganarasimhan et al. 2023; Yang et al. 2023), which often generates negative CATEs. We
examine this last scenario in detail in Section 6 using two field applications.'®

Second, we emphasize the sample efficiency of our approach. In scenarios where the cost
deviates from the mode of the CATE distribution (i.e., ¢ € {0,2,3}), our approach matches or
exceeds the performance of benchmarks using far fewer observations. For example, when ¢ = 2,
our method requires only 5k samples to match the profit levels attained by other methods using
10k samples. This efficiency becomes even more pronounced as the threshold shifts further from
the mode (i.e., c = 3), reinforcing the cost-saving potential of our design.

Finally, we underscore the effectiveness of our approach even in its simplified two-stage de-
sign. Across settings where c € {0,2,3}, the two-stage version consistently outperforms all bench-
marks and performs comparably to the fully adaptive version. This demonstrates that most of the

benefits of policy-aware experimentation can be achieved without the operational complexity of

full adaptivity, making the method highly practical for real-world deployment.

5.4.2. Effectiveness in Identifying Consequential Customers

We further analyze the CATE distributions of the (sampled) customers to understand the effective-
ness of each of the approaches in identifying the most consequential customers. Unlike real-world
data, the simulation setting allows us to observe the true CATEs and therefore offers the oppor-
tunity to directly assess whether our sampling approaches successfully identify and select those
customers whose CATE estimation errors are most consequential for targeting profitability.

Figure 6 illustrates the CATE distributions of the customers sampled by different approaches
(Default, Uncertainty, Proposed) together with the distribution of the entire population (Population).!®
Each subfigure presents one of the scenarios, depending on the intervention cost.!”

Consistently across all scenarios, the EPL criterion (Proposed) selects customers whose CATEs
are close to, yet slightly deviate from the decision threshold. Notably, when the cost aligns with
the mode of the CATE distribution (i.e., c = 1), the CATE distribution of customers selected by our

(Proposed) approach is even more concentrated around this mode than those selected by random

sampling. Additionally, when the cost diverges from the mode (i.e., c € {0,2,3}), our method re-

15 Although our approach performs well even when ¢ = 0 and CATEs are positive, such settings often render a simple
“target everyone” rule nearly optimal, leaving little room for improvement through refined targeting.

16Since the Adaptive approach relies on random sampling of customers, its results are identical to those of the
Default approach.

7Here we set the sample size to 10k and implement the EPL sampling strategy using a two-stage design with r = 0.5.
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Figure 6: CATE Distributions of Customers Sampled by Different Approaches
Each line corresponds to the CATE distribution of the customers sampled by different approaches. The dashed line repre-
sents the intervention cost, which is also the decision threshold.

sults in a CATE distribution that concentrates around, though not directly at, the decision thresh-
old.'8

These results underscore the effectiveness of our approach in pinpointing consequential cus-
tomers — those with CATEs near but not exactly at the decision threshold —and sampling them
intensively. Conversely, customers selected through random sampling (Default) more closely re-
semble the population distribution, while Uncertainty sampling produces a more dispersed dis-
tribution, oversampling extreme values at the expense of the profitable boundary regions. Con-
sequently, the distinction in the sampling of consequential customers between our approach and
the benchmarks becomes particularly pronounced when a smaller fraction of customers are posi-

tioned near the decision threshold. This finding emphasize the advantage of our method in boost-

8When ¢ = 3, our method tends to focus on sampling customers whose CATEs are just below the threshold, as the
pool of customers with CATEs above the threshold is too limited for intensive sampling in this case. By contrast, when
¢ = 2, there are a larger number of customers with CATEs above the threshold, enabling us to sample these customers
more intensively as they are less likely to have been sampled in the first stage. Similarly, for ¢ = 0, our approach
intensifies sampling in regions where customers are less likely to have been selected initially.
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ing targeting performance under conditions with limited customers around the decision thresh-
old.

In conclusion, our simulation results affirm the superiority of our approach in enhancing tar-
geting performance and sample size efficiency, especially in scenarios where a relatively small
fraction of customers are positioned around the decision threshold. This advantage arises from
our method’s ability to effectively identify consequential customers and prioritize their sampling,
an outcome unattainable with random sampling alone. Furthermore, we show that even a sim-
plified two-stage design of our approach maintains its efficacy, providing firms with a practical,
efficient solution for improving targeting outcomes in cases where a fully adaptive design may
be impractical. Taken together, the simulation findings validate the theoretical foundations of
our method and highlight its potential to improve both targeting precision and experimental effi-
ciency, particularly when customers near the decision threshold are scarce. We next assess whether
these gains persist in more complex and realistic environments by turning to two empirical appli-

cations.

6. Empirical Applications

6.1. Overview

We evaluate our proposed method using two real-world marketing campaigns: a dormant-customer
reactivation effort by a telecommunications firm, and a mobile app-based promotion run by a na-
tional coffee chain. Across both settings, we compare the performance of our approach against
baseline and benchmark strategies under varying experimental sizes and cost structures. In both
cases, we evaluate the targeting performance of three types of targeting policies, the Default tar-
geting policy, which is learned from randomly sampling customers for the experimental set and
observing their outcomes, the Uncertainty targeting policy learned from the observed outcomes
of the customers sampled by the uncertainty approach, and the Proposed policy, which is learned
by observing the outcomes of the customers selected via our proposed sampling strategy. Con-

sistent with the analyses in previous sections, we evaluate different variants of our approach by

9Given that the data has already been collected, we do not include Kato et al. (2024) as a benchmark in the empirical
application. The primary reason is that the optimal treatment assignment rule from Kato et al. (2024) might allocate
customers to different treatment conditions than those in the original experimental data. Consequently, implement-
ing Kato et al. (2024) offline would necessitate accurately simulating customers’ counterfactual behavior. Given the
low response rates in both datasets, accurately predicting customers’ counterfactual behavior in these contexts is very
challenging.
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modifying the number of stages: from multiple batches (each with a size of 500) to a simplified
two-stage design.?’ Finally, we test the performance of the different approaches across varying
experimental sample sizes N.

Although our theoretical guarantees apply to a single-shot design with a sufficiently large
initial sample, our empirical applications adopt a sequential implementation to reflect practical
constraints. This setup mirrors the simulation framework and enables progressive refinement of
EPL estimates as more data become available.

To assess the performance of each targeting approach, we use the bootstrap validation scheme
similar to Ascarza (2018), where we generate 100 data splits, with each split consisting of a cus-
tomer base, Z; 80%, and an evaluation set, D,,,;; 20%. In each split, we sample Ng customers
from the customer base, Z, following each of the sampling criteria (Default, Uncertainty and
Proposed). These sampled customers would constitute the experimental data, S, and will, there-
fore, be the data used to estimate the CATE model (for each approach). We then leverage the
constructed CATE model to generate targeting decisions 71(-) on the evaluation set, D,;,;.

We evaluate the targeting performance by first computing the expected profit generated by
each estimated targeting policy, 75(+), as well as a uniform policy, 71, that provides the treatment
to every customer. Specifically, we use the inverse-probability-weighted (IPW) estimator (Horvitz
and Thompson 1952; Hitsch et al. 2024) to estimate the expected profit of a targeting policy, 7(-):

Profit(ft) =) (11—;(1/;2)(1 — 5(X;))Yi(0) + e&)ﬁs(xi)(n(l) - Ci)) (8)

where e(X;) is the (estimated) propensity score of customers assigned to the treatment condition
in the evaluation set D,,,;.

After obtaining the expected profit estimates, the proportional profit improvement of the targeting
policy 7(+) relative to the uniform policy 7, is then computed as the evaluation metric using the

following formula:
Profit(7ts) — Profit(7,)

PPL= Profit(7t,)

©)

where Profit(7, ) denotes the expected profit of the uniform policy. Since this metric quantifies the
profit improvement of the estimated targeting policies relative to the uniform policy, a larger PPI

indicates that the targeting decision estimated from the experimental data D, is more profitable.

20For the multi-stage design, we follow a similar procedure as Waisman et al. (2024) by using equal-sized batches
throughout the experiment. We investigate alternative sample allocation schemes for the multi-stage design and ex-
plore different configurations for the two-stage design in Appendix D.4.
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6.2. Telecommunication Dormant Reactivation Campaign
6.2.1. Empirical Context and Data Description

Our first empirical application leverages the data from reactivation campaign of dormant cus-
tomers conducted by a telecommunication company. The experimental data involves a reactiva-
tion campaign aiming to activate and increase users’ usage over a 14-day period. The experiment
ran from April 7%, 2016 to January 10", 2018. Each week, the company identified eligible cus-
tomers and randomly assigned them to either the control or treatment group. The campaign
included 374,051 eligible customers, with 83,781 in the control group and 290,270 in the treatment
group. Customers in the treatment group were offered 5 units of international voice credit for
3 days if they recharged at least 20 credit units within 3 days of receiving the offer. The out-
come variable, a continuous measure, represented the total expenditure of each customer over the
subsequent 14 days. While the intervention was cost-free for the company (i.e., giving free inter-
national voice credits doesn’t cost the company anything), offering free international voice credits
creates cannibalization as some of the customers would have otherwise paid for these credits. This
cannibalization resulted in treated customers recharging, on average, less than those in the con-
trol group, with a negative average treatment effect of —.65, corresponding to a 5.8% decrease in
average recharge in the next 14 days.

The dataset also includes various pre-treatment customer behaviors, which serve as covariates
for targeting. These variables capture customers’ previous behavior such as usage, recharge ac-
tivity, and cancellation activity (of related services) over the past 7, 14, and 30 days. Additionally,
because the focal company ran the campaign on a weekly basis, we created an additional vari-
able, targeting ratio, which represents the proportion of customers targeted in a given week and
is added as a control in all models. See Web Appendix D.1 for further details about the data.

Our dataset involves a series of experiments run every week, each with a random set of cus-
tomers. Recall that the proposed approach should be particularly useful when there is greater
misalignment between the CATE distribution and the decision threshold. In our data, this should
occur when the intervention has a negative effect due to cannibalization of organic spending, lead-
ing to a high opportunity cost of the intervention. To assess this situation, we compare the analysis
on the full dataset, with an analysis that focuses on the weeks with negative ATEs. The dataset
of negative ATE weeks contains 40.7% of weeks, including 149,411 customers, with an average

treatment effect of —2.02, demonstrating substantially greater misalighment between the CATE
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distribution and the decision threshold compared to the full dataset. By comparing performance
across the full dataset and the partitioned data, we can assess how our approach performs under
different relationships between the CATE distribution and the decision threshold, similar to the

analysis presented in Section 5.

6.2.2. Profitability of Targeting Policies

We now turn to evaluate the performance of the different policies. Recall that for this analysis, we
split the data into customer base, Z, used to run each experimental approach (default or proposed),
and evaluation set, D,,,, used to evaluate the profitability of each policy, as defined in Equa-
tion (9). Figure 7 shows the proportional profit improvement of the targeting policies relative to
the uniform policy. Each line corresponds to the profitability of the policy derived by each exper-
imental design (or sampling approach), across experimental sizes (Ns € {10k, 20k, 30k, 40k, 50k }).
In addition, we report the percentage of replications in which the proportional profit improvement
of the focal method relative to the uniform policy is greater than the default approach in Table 1

to provide a better sense of the performance difference across the different approaches.

Full Data Weeks with Negative ATEs
0.68 4

0.64 4

0.08
_________________________________ 0.62-

0.06 4
0.6

Default

0.04 4
0.58 4

0.024
0.56 4

0.0

Proportional Profit Improvement

0.54 4

-0.024

0.52+

10000 20000 30000 40000 50000 10000 20000 30000 40000 50000
Experimental Size (Ns)

Default == Proposed - Two Stages
Proposed - Multiple Stages —-—- Uncertainty

Figure 7: Performance of Targeting Policies Learned from Different Experimental Designs
(Telecommunication)

We report the average value of the proportional profit improvement relative to the uniform policy across 100 replications.
Each line corresponds to an experimental approach. Higher values indicate better performance.

The results reveal that our approach significantly outperforms the Default approach and per-

forms comparably to the Uncertainty approach.?! The performance advantage over the default

2IThe comparable performance with uncertainty sampling reflects substantial overlap in customer selection; approx-
imately 80% of sampled customers are identical across both methods.
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Table 1: Percentage of Replications in which the Proposed Method Outperforms the Default Ap-
proach (Telecommunication)

Experimental Size
10k 20k 30k 40k 50k

Experimental Design

Panel A: Full Data
Proposed Multiple Stages 74% 61% 69% 66% 59%

Proposed Two-Stage 69% 62% 68% 63% 50%

Uncertainty Sampling 78% 62% 65% 67% 64%

Panel B: Weeks with evidence of cannibalization (Negative ATEs)
Proposed Multiple Stages  72% 79% 80% 75% 80%

Proposed Two-Stage 73%  77% 79% 76% 75%

Uncertainty Sampling 69% 78% 80% 76% 81%

Note: We report the percentage of bootstrap replications in which the proportional
profit improvement of the focal method relative to the uniform policy is greater than
the default approach.

approach is even more pronounced in the partitioned data with negative ATEs, consistent with our
simulation findings that greater misalignment between CATE distribution and decision thresh-
old amplifies our method’s relative improvement. Remarkably, our method requires only 10,000
experimental samples to generate a more profitable targeting policy than the default method
achieves with 50,000 samples. This demonstrates the practical value of our approach, especially
in scenarios where increasing the experimental size is difficult or costly for firms, such as when
the customer base is limited.

Additionally, the simplified two-stage designs achieve similar profitability to that of the fully
adaptive design, regardless of the experimental size. Our findings highlight that even with a
simplified implementation, the proposed method can enhance profitability, making it a valuable

tool for firms with different capacities for experimental scale.
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6.3. Starbucks Promotional Campaign
6.3.1. Empirical Context and Data Description

Our second empirical application utilizes the data from a promotional campaign conducted through
Starbucks’ mobile reward app.??> The experimental data involves a promotional campaign aiming
to increase customers’ purchase rate. In particular, the dataset contains 126,184 customers who
were randomly assigned to either the control group (63,112) or the treatment group (63,072), with
the treated customers receiving the promotional content offered by Starbucks. The outcome vari-
able is binary, indicating whether the customer made a purchase or not. Notably, the response
rates to the intervention are quite low, with 1.68% in the treatment group and .73% in the control
group, leading to an average treatment effect of .95%. The data also includes seven pre-treatment
covariates, which will be used for targeting.??> See Web Appendix D.2 for further details about the
data.

Because the data provided does not include specific details about the promotional content,
we consider two scenarios. First, one in which Starbucks sent a promotional content without
discount (e.g., a notification promoting Starbucks). This is the same as analyzing an intervention
with, essentially, no cost or potential cannibalization. Second, we assume that the intervention
sent to the treatment group was offering a 50% off discount in the next purchase. In this scenario,
the intervention creates cannibalization since using the promotion implies lower revenue in the
associated sale.2* In both scenarios, we assume that each purchasing customer has an order value
of $6, which is the average ticket size for a Starbucks customer.?>. However, for customers who
receive the 50% discount, their spending is reduced to $3 per order. Importantly, each scenario
reflects different levels of cannibalization introduced by the intervention, enabling us to assess
our approach’s performance under varying relationships between the CATE distribution and the

decision threshold, similar to our analysis in Section 5.

22The data is provided by Starbucks and was made available through the Udacity Data Science Program.

2The provided data is anonymized and does not include the meaning of each pre-treatment variable. While this
limits the ability to interpret some findings, these variables contain the necessary information for determining targeting
policies, which is our primary objective.

24We consider this case a cost-free intervention with a risk of cannibalization, rather than a costly intervention, due
to the intervention’s effect of reducing customer spending.

BGource: https:/ /wifitalents.com/statistic /starbucks-customers/
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6.3.2. Profitability of Targeting Policies

We now turn to evaluate the performance of the different policies. Similar to the first empiri-
cal application, we split the data into customer base, Z, used to run each experimental approach
(Default or Proposed), and evaluation set, D,,,;, used to evaluate the profitability of each policy,
as defined in Equation (9). Figure 8 shows the proportional profit improvement of the target-
ing policies relative to the uniform policy for each scenario (no discount and 50%-off discount).
Each line corresponds to the profitability of the policy derived by each experimental design (or

sampling approach), across experimental sizes (Ng € {30k, 35k, 40k, 45k, 50k }).
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Figure 8: Performance of Targeting Policies Learned from Different Experimental Designs
(Starbucks)

We report the average value of the proportional profit improvement relative to the uniform policy across 100 replications.
Each line corresponds to an experimental approach. Higher values indicate better performance.

First, our approach significantly outperforms both benchmarks when Starbucks offers a 50%-
off discount (i.e., when the number of customers around the decision threshold is limited) while it
performs at par with the benchmark approach in the “No Discount” case. This finding is consis-
tent with our simulation results and underscores the practical benefit of our method in enhancing
the profitability of targeting policies, especially in scenarios where the intervention cost is high,

but customer responsiveness might be low, as is the case when Starbucks offers a 50%-off dis-
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count.?® Table 2 reports, for the scenario where Starbucks offer a 50%-off discount, the percentage

of replications in which the proportional profit improvement is greater than the default approach.

Table 2: Percentage of Replications in which the Proposed Method Outperforms the Default Ap-
proach (Starbucks 50%-off Discount)

Experimental Size
30k 35k 40k 45k 50k
Proposed Multiple Stages 57% 75% 76% 89% 93%

Experimental Design

Proposed Two-Stage 49% 54% 53% 54% 55%
Uncertainty Sampling 48% 51% 40% 30% 29%

Note: We report the percentage of bootstrap replications in which the proportional
profit improvement of the focal method relative to the uniform policy is greater than
the default approach when Starbucks offers a 50%-off discount.

Second, even when the proposed approach does not provide additional benefits in learning
targeting policies, as in Scenario 1, our method (whether fully adaptive or performed in two
stages) does not harm profitability. This highlights the low risk of implementing the proposed
approach in practice.

Third, when comparing the performance of targeting policies across different experimental
sizes, the default method requires at least 50k experimental samples to achieve the same level of
profitability as the fully adaptive method with only 35k experimental samples. This underscores
the value of the proposed approach, particularly in situations where increasing the experimental

size is challenging or costly for firms, such as when the customer base size is limited.

6.4. Discussion of Results

Across both empirical applications, our proposed method consistently shows either comparable
or superior performance relative to both benchmarks. Notably, it excels when the intervention cre-
ates a risk of cannibalizing profits that would have been earned in the absence of intervention, as
evidenced in both the telecommunications application (offering free credits) and the 50% discount

scenario for Starbucks (offering discounts). In these cases, the interventions reduce incremen-

20In the “No Discount” scenario, the estimated targeting policies perform similarly to the uniform policy across
different experimental designs. This suggests that when the intervention is cost-free and customers respond positively,
a simple strategy of targeting all customers would already be close to an optimal approach.
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tal spending for targeted customers, resulting in a negative average treatment effect. This result
arises because, with a combination of weak treatment effects and cannibalization caused by the
intervention, the CATE distribution tends to be leftward shifted (negative treatment effect). How-
ever, the firm’s decision threshold still falls at zero. This misalignment between the mode of the
CATE distribution and the decision threshold results in a smaller fraction of customers positioned
near the threshold, making it harder to identify critical customers effectively.

Notably, this scenario frequently occurs in various marketing campaigns involving free goods
or monetary incentives like coupons (e.g., Ascarza 2018; Yang et al. 2023). In addition, as predicted
by our simulation results, our approach is also expected to be beneficial when there is a misalign-
ment between intervention costs and the central tendency of customer responsiveness, such as
when (1) the intervention is detrimental for most customers (e.g., Ascarza et al. 2016), or (2) costly
interventions (e.g., phone calls, mailings) show low effectiveness (e.g., Lemmens and Gupta 2020).
In general, we recommend firms adopt our approach whenever there is a likely disparity between

intervention cost and customer responsiveness.?”’

7. Conclusion

This paper develops a novel experimental design framework, policy-aware experimentation, that
aligns experimental sampling directly with firms’ profit-maximizing targeting goals. Instead of
selecting experimental samples uniformly at random, our approach adaptively prioritizes cus-
tomers whose treatment effect estimation errors are most likely to impact profitability. We intro-
duce a new criterion, expected profit loss (EPL), and show that sampling based on this criterion
yields a near-optimal approximation to the globally optimal sampling strategy that yields the
profit-maximizing targeting policy.

To operationalize this idea, we propose a sequential design guided by the EPL sampling strat-
egy and introduce an estimation strategy that leverages the power of Bayesian inference in un-
certainty quantification via Causal Forests. This enables firms to identify and oversample “conse-
quential” customers — those near the decision threshold with high uncertainty — without requir-

ing knowledge of true treatment effects. The method can be implemented in either a multi-stage

27Theoretically, our approach is also expected to perform well when the intervention is costless and customers are
highly responsive, as the decision threshold in such cases similarly deviates from the mode of the CATE distribution.
However, in these scenarios, a straightforward strategy that targets every customer would already be close to optimal,
offering limited room for further improvement in targeting performance as shown in Section 6.3.2.
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or a simplified two-stage format, depending on practical constraints such as delayed feedback or
operational costs.

Our simulations and empirical analyses demonstrate that policy-aware experimentation offers
substantial improvements over conventional sampling strategies —including standard test-then-
learn, uncertainty sampling, and a leading adaptive strategy — especially in contexts where only a
limited share of customers lies near the decision threshold. These settings frequently occur when
interventions are broadly harmful (e.g. Ascarza et al. 2016), expensive with uncertain returns (e.g.
Lemmens and Gupta 2020), or pose a risk of revenue cannibalization (e.g. Anderson and Simester

2004) — conditions under which traditional sampling fails to prioritize high-impact customers.

Managerial Implications. For marketing leaders aiming to improve the ROI of experimental
targeting, our findings offer actionable guidance. The expected profit loss (EPL) sampling strat-
egy is particularly valuable when a misalignment exists between intervention costs and the central
tendency of customer responsiveness — conditions under which uniform sampling often fails to
prioritize the right customers. EPL overcomes this by directing experimental resources toward
individuals whose targeting decisions are most economically consequential. In our empirical ap-
plications, the proposed method improves profit outcomes by 5% to 10% compared to standard
sampling approaches, and delivers similar results with up to 80% fewer experimental observa-
tions — underscoring its efficiency in data usage and impact on decision quality. This makes the
approach especially attractive in constrained environments where expanding experimental size
is difficult or costly. Moreover, EPL sampling can be implemented using off-the-shelf CATE esti-
mators such as Causal Forests in EconML, reducing engineering complexity and enabling rapid
deployment. Even a simplified two-stage implementation retains these benefits, minimizing op-
erational burden and accelerating learning in settings with delayed feedback, such as promotions,

churn prevention, or cross-channel campaigns.

Limitations and Future Directions. Although our research provides a simple and efficient solu-
tion for firms to improve targeted policies, there are limitations that suggest promising directions
for future research. First, we focus on scenarios where the firms’ profit-maximizing objectives are
not subject to any constraints. However, in practice, some firms may face several managerial con-
straints on their targeted policies, such as budget constraints or fairness constraints (Lu et al. 2023).

Future research could build on the decision-aware learning literature (e.g. Chung et al. 2022; Liu
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et al. 2023) to explore different sampling strategies that integrate firms” business objectives into
the experimental design while accounting for these constraints.

Second, our approach assumes that firms lack prior knowledge about consumers’ respon-
siveness to interventions. However, firms often possess historical experimental or observational
data that, while related, may differ from the current experiment. For instance, firms may have
conducted campaigns involving different interventions, such as varying discount levels. While
previous research has explored transferring knowledge from past marketing campaigns to en-
hance targeting policies (Timoshenko et al. 2020; Huang et al. 2024) it has not addressed the mis-
alignment between experimentation approaches and the firm'’s objectives. Future research could
investigate ways to incorporate information from previous campaigns to refine the design of focal
experiments in a policy-aware manner.

Third, although our two-stage design remains effective when there is a delay between the
intervention and the outcome of interest, more efficient methods could address delayed feedback.
Prior work has examined strategies for handling delayed feedback in multi-armed bandits by
explicitly modeling the relationship between partial and delayed feedback (e.g. Grover et al. 2018).
Building on these approaches, future research could extend our proposed sequential design to
better manage significantly delayed feedback and reduce the overall lag time.

Fourth, our approach assumes that firms have a fixed customer base, allowing them to eas-
ily determine which customers warrant closer attention based on the potential impact of CATE
estimation errors on profitability. While this scenario is common in various marketing applica-
tions such as customer retention (e.g., Ascarza 2018; Lemmens and Gupta 2020; Yang et al. 2023)
and most promotional activities to incentivize consumption (e.g., Hitsch et al. 2024; Simester et al.
2020), there are instances where customers arrive sequentially and unpredictably, such as in dig-
ital advertising or customer acquisition strategies. In these cases, strategic sampling becomes
more challenging, as firms cannot anticipate whether future customers might be more consequen-
tial and thus deserve greater focus. Future research could draw upon insights from the online
active learning literature (Cacciarelli and Kulahci 2024) to investigate optimal sampling strategies
in such dynamic environments.

Finally, alternative enhancements to our policy-aware approach could be explored. For in-
stance, we proposed selectively sampling customers while assigning treatments randomly. Future
research could investigate methods for both selectively sampling customers and strategically as-

signing them to treatment conditions to better align with firms’ business objectives and improve
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targeting performance. Additionally, in cases where control condition is equivalent to business
as usual, one could extend our work to use all non-experimental customers as a control group to
enhance the estimation efficiency. Future research could explore the optimal sampling strategy
under this framework.

Overall, our research demonstrates the value of incorporating firms” business objectives into
the design of experiments. We hope that our work will inspire further research on aligning the
science of experimentation with firms’ objectives across a wider range of empirical and operational

contexts.
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Web Appendix

Policy-Aware Experimentation:
Strategic Sampling for Optimized Targeting Policies

These materials have been supplied by the authors to aid in the understanding of their paper.

A. Comparison of Methodologies in Literature

Table W-1: Comparison of Methodologies in Literature

Literature Objective Sampling Sampling Pre-trea.t ment Pre-Segmentation =~ Sequential Examples
Strategy Space Covariates
Feit and Berman (2019) Calculate sample size N/A N/A N N N N/A
Simester et al. (2022) Calculate sample size N/A N/A Y Y N N/A
Hu et al. (2024) _ Leaming Stratified Sampling Context Y Y N N/A
minimax-regret policy
. . . Minimizing estimation uncertainty . Kiefer and Wolfowitz (1959),
Optimal Experimental Design of parametric models A- and D-optimal Context Y N N Fontaine et al. (2020)
Balancing exploration Schwartz etal. (2017),
Multi-Armed Bandit & explor TS, UCB, etc. Action N N Y Misra et al. (2019),
and exploitation 2
Hauser et al. (2009),
Balancing exploration Li etal. (2010),
Contextual Bandit R f loﬂaﬁon TS, UCB, etc. Action Y N Y Caria et al. (2020),
P Aramayo et al. (2022),
Athey et al. (2022)
Bubeck et al. (2010),
Best Arm Identification (BAT) Identify best treatment TS, UCB, etc. Action N N Y Chick and Frazier (2012),
with minimum sample Grover et al. (2018),
Kasy and Sautmann (2021)
Learning personalized polic: Jedra and Proutiere (2020),
Contextual BAI Wiihifini;um Samf’le Yy TS, UCB, etc. Action Y N Y Carranza et al. (2023),
P Kato et al. (2024)
Waisman et al. (2024) Reducing experimentation Cost s Action Y N Y N/A
for ad effect estimation
. . - . . . Fu et al. (2013),
SActlve'.I‘ﬂe;r:mg tfor (f)ph-mlze (Yi.a-ta?jclo]lect.lon UncertBaXLt]}:;Satmplmg, Context v N v Wang and Ye (2015),
upervise earmng Or supervise earr\lng , etc. Cardoso et al. (2(117)
Active Learning for Optimize data collection Puha et al. (2020),
CATE Estimation for CATE estimation EMCM, BALD Context Y N Y Jesson et al. (2022)
Active Learning for Optimize observational data . . .
Decision Making collection for decision making Uncertainty Sampling Context Y N Y Sundin et al. (2019)
Active Learning for Optimize data collection . . .
Predict-then-Optimize for predict-then-optimize Margin-based Sampling Context Y N Y Liu et al. (2023)
Learning profit-maximizing
Our approach targeting policy with Expected Profit Loss Sampling ~ Context Y N Y N/A

pre-determined sample size




B. Proof of Proposition 1

Throughout the analysis, we consider a class of local nonparametric CATE estimators widely used
in the marketing literature including nearest neighbor with growing k, kernel estimators, and
honest forest estimators with sub-sampling such as Causal Forest (Wager and Athey 2018; Athey

et al. 2019). We further impose the following regularity assumptions on the CATE estimators:
Assumption W-1 (Regularity Conditions).

1. (Lipschitz continuity of the CATE and cost function) The CATE function t(-) : X — R and the cost
function (-) : X — R are L-Lipshitz continuous, i.e., for all x,x" € R, there exists a finite constant
L such that:
|7(x) = T(x)] < Lllx = x|

le(x) = e(x")] < Lflx = x"]|.

2. (Error-density log-concavity) Let Z = f(xg(;;(x) denote the standardized estimation error. For all
x € X, the probability density function fz(-) is symmetric about zero and log-concave, i.e., 1og fz(u)

is a concave function of u € R.

3. (Bounded influence region) Let d denote the dimensionality of the covariate space. There exists an
a € (0, %) such that for all n > |D|, the estimator at any query point X; only uses observations
within a ball of radius

h, =O(n™"%).

4. (Variance-shrinking property) For any x € X and training set S € Z, the pointwise variance of T(x)

satisfies
o?(x)

B Y5/ (x)”

where o (x) is continuously differentiable and the sequence {7y, (x) }Z":‘D‘ with v, (x) = nht satisfies

o5 (x)

the following properties:

(@) vn(x) is monotonically non-decreasing for all n.

(b) The sequence of first-order differences vy, +1(x) — yn(x) is monotonically non-increasing for all

n.

(c) For each n, the function y,(-) : X — R is continuously differentiable.



Note that the bandwidth and variance-shrinking property are generally satisfied for the class
of CATE estimators we consider. The log-concavity condition encompasses a wide class of prob-
ability distributions frequently employed in the literature to model estimation errors, including
the normal (Gaussian), logistic, Laplace, and Student’s t-distributions with sufficient degrees of
freedom.

We now prove Proposition 1:

Proof. To prove the approximation bound, we define the objective function as:
f(8) = E[Yi(0) + (z(Xi) — (X)) - 745 (Xi)],

where the expectation is taken w.r.t both the covariate distribution and the sampling distribution
of 7ts. For notation simplicity, throughout the analysis, we denote Ex as the expectation taken
w.r.t the covariate distribution of the firm’s customer base, E; as the expectation taken w.r.t the
sampling distribution of 7ts, and E as the expectation taken w.r.t both uncertainty.

We establish three key properties: For any sufficiently large initial set D and any augmented
set S = DUS, C T with k > 0 and |Sk| = k, the objective function f satisfies the following

conditions:
1. f(S) is monotonically non-decreasing with respect to set inclusion.

2. f(S) is submodular, i.e., the marginal benefit of adding an element diminishes as the set

grows.
3. The expected profit loss criterion:
ls(Xi) = Ep [|[T(X;) — c(Xi)| - 1{7ts(X;) # 7" (Xi) }]

identifies the elements that yield the maximum marginal improvement in the objective func-

tion f.

Consequently, iteratively selecting customers with the largest ¢5(X;) after initializing with D con-

stitutes a greedy algorithm. By the classic result of Nemhauser et al. (1978), we have

FDUSH) > (1-1) F(DUS)),



where S§ denotes the k points selected by the greedy algorithm and S; represents the optimal set
of k points such that the targeting policy 7ts estimated from it maximizes the firm’s expected profit

when deployed on future customers with the same distribution as Z.

Monotonicity

We first show that the objective function f(S) is monotonically non-decreasing as we gather more

samples. Let us define
L(S) = f* = f(5)

= E[Yi(0) + (7(Xi) — c(Xi)) - 77 (Xi)] = E[¥;(0) + (t(Xi) — c(Xi)) - 745(X3)]

= E[|T(X;) — c(Xi)| - 1{7As(Xi) # 7 (Xi) }]

= Ex [[T(Xi) — e(Xi)| - Pr(1{7ts(X;) # 7" (Xi)})] -
By the symmetric property of the error-density, we have that

Pr(1{7ts(x) # *(x)}) = Fy <—|T(x)—c(x)\> Vx € X,
o(x)

where Z = W. By the variance shrinking property, Vx € X, 02(x) > ¢%(x) if S C T. Since

Fz (W) is weakly increasing in o (x), the mistargeting probability is weakly increasing in

o(x), implying that
(%) — c(x)] - Pr(1{s(x) £ 7 (x)}) = [7(x) — c(x)] - Pr(1{Ar(x) # 7 (x)})
for all x € X. Taking the expectation over the covariate distribution, we have that
L(S) > L(T),

and since f(S) = f* — L(S), we therefore have

f(8) < A(T).

Therefore the objective function is monotonically non-decreasing.



Submodularity

Next, we show that the objective function f(S) is submodular, i.e.,

f(SULG}) = £(S) 2 F(TU{j}) = F(T)
foranySCTCZandj¢ T.
We start by showing that Vx € X, the pointwise loss improvement
ls(x) = Bz [[T(x) = c(x)| - {75 (x) # 7" (x)}]
— J7(x) — e(x)] - Pr(1{ s (x) # 7 (x)})
() —e(w)] - By ( ZEE) = el
— e —c() £ () S

~e(x) ()] (DA )
satisfies
ls(x) — Lsygjy (x) > Lr(x) — Lrygjy ().

Since Fz(+) is a continuous non-decreasing function, by mean-value theorem,

bz <_‘T(x)_c(x)| 7|S|<x)> —Fz <_’T<x)_c(x)‘ 75+1(x)> -

o(x) o(x)
fz(usy) - ‘T \/“Y\SH\ \/’Y\S\

d(x)

for the interval where ug, € (—d(x) v/ Vs (x), —d(x) - 'y|5|(x)).

By the log-concavity of the error-density function, we have that

fz(usy) > fz(ur)

as us, > ury. Furthermore, due to the variance-shrinking property and the concavity of square-

root function, we have that

\/7\s+1\ \/7\5\ \/7|T+1| \/’Y|T|

Putting all together, for any x € X, we have that

ls(x) — Lsugjy (x) = Lr(x) — Lrygjy ().



Taking expectation over the covariate distribution, we have
L(S) = L(SU{j}) = L(T) = L(TU{j}),
implying that

fFSULj}) = £(S) = F(TU{j}) — £(T).

Therefore f is submodular.

Greediness of expected profit loss sampling

We now establish the greediness of the proposed algorithm. In particular, we show that given a
sufficiently large initial set D, for any S = D U S; with k > 0 and |Si| = k, the element produc-
ing the largest marginal improvement f(S U {j}) — f(S) is identical to the one with the largest

expected profit loss, i.e.,

argm]axf(S U{j}) — f(S) = argmjaxfs(xj).

We first show that for distinct indices i # j, the difference between the point-wise marginal
improvement of point i and that of point j is asymptotically negligible, i.e.,
(ls(Xj) = Lsun (X)) - (L+0O(|S[7%)) if X; € B(X, hyg))
ls(Xi) — Lsugy (Xi) =
0 otherwise.
If X; & B(Xj, hg)), since i is out of the influence region of X;j, £s(X;) — £sy¢j3(Xi) = 0. If X; €
B(X],h‘5|), since

£5() = gy () = [706) = ) o) - L 2 g ()

d(x)

we have that

ls(Xi) = Lsugjp (Xi) _ X)) —e(Xi)| fz(us) d(Xi) \/7‘S+1‘(Xi) B \/’”S'(X") (W-1)
(ls(Xj) = Lsugn (X5))  |T(X) —c(X)| fz(us;) d(X;) \/7\5+1\(X]')_\/7|5|(XJ')‘

Since the functions fz(-), o(+), and 7,(-) are continuously differentiable on their respective
domains, they satisfy the local Lipschitz condition. Specifically, for any compact ball B C X, there

exists a constant Ly > 0 such that each function is Lg-Lipschitz on B. Furthermore, given that



7(-) and c(-) are both L-Lipschitz on X, the function d(-) = ‘T('l){;(')' and the term  /7541() —

7|s/(+) also satisfy the local Lipschitz condition.

Therefore, since X; € B(Xj, hg|) and the interval length of us ,: d \/ V)s41|(x \/ 75 (x
O(IS|~*#*) < O(hs)), we have
lus,i —us,j| < ‘d "\ Vs+ (X Xj)\/7)s) (X ‘
’d Vs (X 7)s/(X ‘d (/11 (X Xj)q/ 75| (X ‘
interval length of u,,=0(|s| %)
< O(Is|~ %) +O(hyg))
< O(hg)),

where the second inequality comes from the triangular inequality and the third comes from the

local Lipschitz condition of d(-) and <y (-). Thus, by the local Lipschitz condition, we have that

1T(Xi) — c(Xi)| = |T(Xj) — (X)) + O(hyg))
fz(us;) = fz(us;) +O(hs))
d(X;) = d(X;) + O(hs))

\/7|s+1\( \/“Y|s\ i) = \/\s+1\ \/’Y\s| ) +O(hg)).

Plugging into Equation (W-1), we have that

Cs(Xi) — Lsugy (Xi)
(€s(Xj) = Lsugn (X))

Taking expectation over the covariate distribution, we have that

L(S) — L(SU{j}) = Ex[ls(Xi) — sugjy (Xi)]
x (Ls(Xj) = sy (X)) - (1+O(hyg))) (W-2)
~ L5 (X)) — Lsugjy (X))
since |S| = |D| + k is sufficiently large.
We now show that for any i,j ¢ S, if £5(X;) > £5(X;), f(SU{j}) — f(S) = f(SU{i}) — f(S).
By the variance-shrinking property, since £s(X;) > £su(;) (X)), there exists a B; € (0,1) such that

Csugy (X5) < Bls(X;).



Consequently, if £5(X;) > £5(X;), let B = max{p;, B;}, we obtain that

(L(S) = L(SU{j})) — (L(S) = L(SU{i})) = (Ls(X)) — Lsujy (X)) — (Us(Xi) — Lsugiy (X))
= (€s(Xj) — £s(Xi)) — (Lsugjy (Xj) — Lsugiy (Xi))
> (Ls(Xj) = £s(Xi)) — B(Es(Xj) — €s(Xi))
= (1-p)(ls(X;) — £s(Xi))
> 0.

Therefore, if £5(X;) > £5(X;),

L(S) = L(SU{j}) = L(S) — L(SU{i}),

implying that
f(SU{j}) = £(S) = fF(SU{i}) — f(S).

Thus, for any S = D U S5, with k > 0,
argmax f(S U {j}) — £(S) = arg max £s(X;).
] ]

Conclusion

Given a sulfficiently large initial sample D, since for any S = DU S, € Z with k > 0 and |S| = &,
we have established that: (i) the objective function f(S) is monotone, (ii) f(S) is submodular, and

(iii) the expected profit loss function

ls(Xi) = Ea [|T(Xi) — c(Xi)| - 1{As(Xi) # 7*(Xi) }]

identifies the customers who yield the largest marginal improvement in f. By the classical re-
sult of Nemhauser et al. (1978), the greedy algorithm that iteratively selects customers with the
highest expected profit loss £5(X;) after initializing with D satisfies the following approximation
guarantee

FDUSE) > £(D) + (1= 1) (F(DUS]) ~ (D))

> (1- Df(DUS)),

where S§ denotes the greedy solution and S; the optimal sample of size k. This concludes the

proof.



C. Further Details of Simulation Studies

C.1. Implementation Details
C.1.1. Default (A/B Test with Random Sampling)

For each experimental size Ng € {1k, 5k, 10k, 20k, 30k}, we randomly sample Ng customers from
the customer base Z and assign them randomly to two treatment conditions with a probability
of 0.5. For CATE estimation, we construct a Causal Forest model (Wager and Athey 2018) imple-
mented using the econML package in Python. This model consists of 100 trees with a maximum

depth of 10 to prevent overfitting.

C.1.2. Uncertainty Sampling

For each experimental size Ng € {1k, 5k, 10k, 20k, 30k }, we follow a similar procedure as Waisman
et al. (2024) by using equal-sized batches throughout the experiment. In particular, we partition
the full sample into % batches, each containing 200 customers. Additionally, we evaluate alter-
native sample allocation schemes (constant batch size and decreasing batch size over 10 batches)
to assess their impact on performance. Customers within each batch b are randomly assigned to
the two treatment conditions with a probability of 0.5.

For uncertainty estimation, as well as for the final CATE estimation, we utilize a Causal Forest
model implemented using the econML package in Python. This model consists of 100 trees with
maximum depths not exceeding 10. We estimate the uncertainty associates with the CATE esti-
mates 0 (Tg-1(x)) by computing the standard deviation across the predictions generated by each

tree.

C.1.3. Kato et al. (2024)

For each experimental size Ng € {1k, 5k, 10k, 20k, 30k }, we follow a similar procedure as Waisman
et al. (2024) by using equal-sized batches throughout the experiment. Specifically, we partition the
full sample into é\‘ﬁ% batches, and randomly sample 200 customers who have not been sampled in
previous batches from the customer base Z in each batch b. Additionally, we evaluate alternative
sample allocation schemes (constant batch size and decreasing batch size over 10 batches) to assess

their impact on performance.



For customers in the first batch b = 1, we assign them randomly to the two treatment con-
ditions with a probability of 0.5. For customers subsequent batches, we assign them to the two
treatment arms based on the following rule:

Ugb,l (x)
O'gbfl (x) + U—;b—l (x)

U;b—l (x)
ffghq (x) + O—;bfl (x)

Psb—l (Wi = 0|Xi = x) =

P5b71 (Wi = 1|X1' = x) =

where ¢%

¢-1(x) denotes the standard deviation of the potential outcomes Y;(W; = w) estimated

from the previous b — 1 batches. In particular, we estimate customer’s response function for the
two treatment conditions (E[Y;(0)|X;], E[Y;(1)|X;]) using two Random Forest models. These Ran-
dom Forest models are implemented using the sklearn package in Python, each consisting of 100
trees with maximum depths not exceeding 10. We estimate ((Tgb,l (x), (7;,,,1 (x)) by computing the
standard deviation across the predictions generated by each tree.

We slightly modify the decision estimation phase from the original paper to ensure compa-
rability with our approach. Specifically, we derive the targeting decisions 7(X;) using the CATE
predictions (X;) generated by the CATE model, rather than directly estimating them with a pol-
icy learning model (e.g. Athey and Wager 2021). This adjustment allows us to eliminate potential
differences in targeting performance that may arise from different estimation strategies.?®
For CATE estimation, we construct a Causal Forest model implemented using the econML pack-

age in Python, consisting of 100 trees with maximum depths not exceeding 10. Note that the

Causal Forest model in econML is designed to solve the local moment equation:
E[Yi — T(x) : Wl' — B(X)|Xi = x] =0

where B(x) = E[Y;|X; = x|. Therefore, we account for the adaptive nature of the experimental

1
data by substracting the propensity score Pg1(W; = 1|X; = x) = — RN

71 (x)—Hr;b_l (%)

treatment assignment W; based on Robinson’s Decomposition (Robinson 1988):

from the actual

Yi — B(Xi) = T(Xl')(Wl' — E(Xi)) + &

ZNote that the treatment assignment ratio proposed in Kato et al. (2024) remains unaffected by the estimation strat-
egy.




C.1.4. Proposed Approach with Multiple Stages

For each experimental size Ng € {1k, 5k, 10k, 20k, 30k }, we follow a similar procedure as Waisman
et al. (2024) by using equal-sized batches throughout the experiment. In particular, we partition
the full sample into % batches, each containing 200 customers. Additionally, we evaluate alter-
native sample allocation schemes (constant batch size and decreasing batch size over 10 batches)
to assess their impact on performance. Customers within each batch b are randomly assigned to
the two treatment conditions with a probability of 0.5.

For EPL estimation, as well as for the final CATE estimation, we utilize a Causal Forest model
implemented using the econML package in Python. This model consists of 100 trees with maximum

depths not exceeding 10.

C.1.5. Proposed Approach with Two Stages

For each experimental size Ng € {1k, 5k, 10k, 20k, 30k}, we consider three different proportions
of customers r to sample in the first stage (r € {0.5,0.7,0.9}) and follow a two-stage sampling

approach:
1. In the first stage, we randomly sample r - Ng customers from the customer base 7.

2. In the second stage, we select the remaining (1 — 7) - N5 customers who have the highest

EPL estimated from the first stage.

3. Customers sampled in both stages are randomly assigned to the two treatment conditions

with a probability of 0.5.

For EPL and final CATE estimation, we employ a Causal Forest model implemented using the
econML package in Python. This model comprises 100 trees with maximum depths not exceeding

10.

C.2. Additional Results for Alternative Sample Allocation Schemes

In this appendix, we present additional results examining alternative sample allocation schemes
with the same CATE distribution and intervention costs as in Section 5. Specifically, for the multi-
stage design, we evaluate two sample allocation approaches: constant batch size and decreasing

batch size over 10 batches. In addition, we explore three different configurations of the two-stage

W-10



design by varying the proportions of customers r to sample in the first stage (r € {0.5,0.7,0.9})

and compare their performance with the multi-stage design.

C.2.1. Alternative Sample Allocation Schemes for Multi-Stage Design

We first examine the performance of the multi-stage design of our approach under two alternative
sample allocation schemes: a constant batch size allocation (dividing the experimental budget
equally across 10 batches) with a decreasing batch size allocation (where earlier batches receive
more samples).
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Figure W-1: Proportional Profit Gaps of Different Experimental Designs under Alternative
Sample Allocation Schemes

We report the average value of the proportional profit gap across 100 replications. Each line corresponds to an experimental
approach.

Figure W-1 shows the proportional profit gaps of the targeting policies learned by different ex-
perimental designs under different sample allocation schemes across different intervention costs
(c € {0,1,2,3}) and experimental sizes (Ns € {1k, 5k, 10k, 20k, 30k }) respectively. The results are

qualitatively similar to the one with the baseline fixed batch size of 200. In particular, our ap-
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proach consistently outperforms the three benchmarks when the number of customers around the
decision threshold is limited (i.e., ¢ € {0,2,3}), especially at smaller sample sizes. Notably, the
performance of our approach remains similar across both alternative allocation schemes (constant
and decreasing batch sizes), with decreasing batch sizes showing slight advantages when exper-
imental budgets are particularly small (N5 = 1k), indicating that the specific allocation strategy

has minimal impact on the effectiveness of our approach.

C.2.2. Alternative Configurations for Two-Stage Design

We now explore the performance of the simplified two-stage design of our approach under three

different proportions of customers r to sample in the first stage: r € {0.5,0.7,0.9}.
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Figure W-2: Proportional Profit Gaps of the Two-Stage Design under Alternative Configura-

tions

We report the average value of the proportional profit gap across 100 replications. Each line corresponds to an experimental

approach.
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Figure W-2 shows the proportional profit gaps of the targeting policies learned by a multi-
stage design and three two-stage design of our approach under different configurations (r €
{0.5,0.7,0.9}) across different intervention costs (c € {0,1,2,3}) and experimental sizes (Ns €
{1k, 5k, 10k, 20k, 30k }) respectively. The results indicate that the two-stage design generally per-
forms comparably to the multiple-stage version. Moreover, when the cost is near the mode and
the sample size is small (e.g., Ns = 1000), a two-stage design with a higher proportion of cus-
tomers sampled in the first stage (i.e., r = 0.9) demonstrates the best performance among the four
variants of our proposed approach. This is because in such scenarios, more accurate EPL estimates
are crucial to effectively sample the consequential customers as intensively as random sampling
does. Hence, a greater proportion of customers sampled in the first stage becomes necessary when

dealing with smaller sample sizes.

C.3. Additional Results for Alternative CATE distributions

In this appendix, we present additional robustness results examining different CATE distributions.
Specifically, we consider two additional distributions: a bimodal distribution with two equal seg-
ments and a bimodal distribution with two unequal segments. We test these two additional CATE
distributions using the three sample allocation schemes for the multi-stage design (fixed batch size
of 200, constant batch size across 10 batches, and decreasing batch size across 10 batches) as well

as the three configurations of the two-stage design (r € {0.5,0.7,0.9}).

C.3.1. Bimodal Distribution with Two Equal Segments

We generate a customer base Z with a bimodal CATE distribution featuring two equal segments

according to the following data generating process:

Y; = 1(X;) « Wi+ X * Xis +e;, e ~N(0,1)
T(X;) = Xin * Xip + Xiz * (1 — Xjp)

where
X ~N(2,15)

Xiz ~ N (—4,1.5)
Xis ~ N(0,1)

Xij ~ Bernoulli(0.5), j€ {2,4}
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are identically and independently distributed.

In this scenario, we consider three different intervention costs ¢ € {—4,—1,2} where ¢ =
—4 and ¢ = 2 corresponds to peak of the distribution, and ¢ = —1 represents a valley in the
CATE distribution. Figure W-3 visualizes the relationship between the CATE distribution and the

intervention costs.

c=4

1 c=2

0
CATE

Figure W-3: CATE Distribution and Intervention Costs: Bimodal Distribution with Two Equal
Segments

Each dashed line corresponds to a different intervention cost c. ¢ € {—4,2} aligns with the mode of the CATE distribution.
c = —1 represents the valley of the CATE distribution.

Figure W-4 and Figure W-5 shows the proportional profit gaps and profit gaps of the tar-
geting policies learned by different experimental designs across different intervention costs (c €
{—4,—1,2}) and experimental sizes (Ns € {5k, 10k, 20k, 30k}) respectively.?’ The results are qual-
itatively similar to the one with normally distributed CATEs. In particular, our approach con-
sistently outperforms the three benchmarks when the number of customers around the decision
threshold is limited (i.e., c = —1). Conversely, when the decision threshold aligns with the mode
of the distribution (i.e., ¢ € {—4,2}), the improvement against the default and approach and Kato
et al. (2024) is subtle. 3

Figure W-6 further shows the proportional profit gaps of the targeting policies learned by
different experimental designs under different sample allocation schemes. The results are qual-
itatively similar to the one with the baseline fixed batch size of 200. In particular, our approach
consistently outperforms the three benchmarks when the number of customers around the de-

cision threshold is limited (i.e., ¢ = —1). While the two allocation schemes generally produce

29When ¢ = —1, due to the scarcity of consequential customers, our approach requires a larger sample size to identify
sufficient consequential customers. Therefore, we omit the analysis with Ng = 1k for this case.

30The difference in the proportional profit gap between ¢ = —4 and ¢ = 2 is primarily due to the disparity in their
denominators. In particular, since ¢ = —4 represents a less costly intervention, the incremental profit generated by the
optimal policy is greater compared to ¢ = 2. As a result, despite having similar numerators, this leads to asymmetry in
the proportional profit gaps between the two scenarios.
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Figure W-4: Proportional Profit Gaps of Different Experimental Designs: Bimodal Distribution

with Two Equal Segments
We report the average value of the proportional profit gap across 100 replications. Each line corresponds to an experimental

approach.
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Figure W-5: Profit Gaps of Different Experimental Designs: Bimodal Distribution with Two
Equal Segments

We report the average value of the profit gap across 100 replications. Each line corresponds to an experimental approach.
comparable performance, the decreasing batch size shows slight advantages when sample size is
small, especially when the intervention cost aligns with the mode ¢ = 2).

Figure W-7 displays the CATE distributions of the customers sampled by various approaches
across different intervention costs. The results underscore the effectiveness of our approach in

identifying and intensively sampling consequential customers.
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Figure W-6: Proportional Profit Gaps of Different Experimental Designs under Alternative
Sample Allocation Schemes

We report the average value of the proportional profit gap across 100 replications. Each line corresponds to an experimental
approach.
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Figure W-7: CATE Distributions of Customers Sampled by Different Approaches: Bimodal
Distribution with Two Equal Segments

Each line corresponds to the CATE distribution of the customers sampled by different approaches. The dashed line rep-
resents the intervention cost, which is also the decision threshold. The difference between ¢ = —4 and ¢ = 2 is mainly
driven by the difference in the denominator. In particular, since ¢ = 2 exhibits greater cost, the profit of the optimal policy
of c = 2 is smaller than c = —4, leading to a smaller denominator in the proportional profit gap formula. Therefore, the
evaluation metric

C.3.2. Bimodal Distribution with Two Unequal Segments

We generate a customer base Z with a bimodal CATE distribution featuring two unequal segments

according to the following data generating process:

Y = 7(X;i) * Wi+ Xia * Xis +e;, ¢ ~N(0,1)

T(X;) = Xin * Xip + Xiz * (1 — Xip)
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where
X ~N(3,1)

Xz ~N(=2,1)
Xis ~ N(0,1)
Xij ~ Bernoulli(0.5), j€ {2,4}
are identically and independently distributed.
In this scenario, we examine three different intervention costs ¢ € {—2,1,3} where c = —2is

at the lager peak, c = 3 is at the smaller peak, and ¢ = 1 is at the valley of the CATE distribution.

Figure W-8 illustrates the relationship between the CATE distribution and the intervention costs.
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Figure W-8: CATE Distribution and Intervention Costs: Bimodal Distribution with Two Unequal
Segments

Each dashed line corresponds to a different intervention cost c. ¢ = —2 aligns with the larger peak and ¢ = 3 aligns with
the smaller peak of the CATE distribution. ¢ = 1 represents the valley of the CATE distribution.

Figure W-9 shows the proportional profit gaps of the targeting policies learned by different
experimental designs across different intervention costs (¢ € {—2,1,3}) and experimental sizes
(Ns € {5k, 10k, 20k, 30k }).3!

As shown in the graph, our approach generally surpasses the three benchmarks when the cost
is at the valley and the smaller peak of the CATE distribution.>> However, when the sample size
is small (i.e., Ng = 5000), it is crucial for the firm to carefully select the appropriate deign. Specifi-
cally, when the decision threshold is at the smaller peak, the firm should avoid a two-stage design

with a limited first-stage sample, as the small initial sample size can lead to substantial EPL esti-

31When ¢ = 1, due to the scarcity of consequential customers, our approach requires a larger sample size to identify
sufficient consequential customers. Therefore, we omit the analysis with Ng = 1k for this case.

32When the decision threshold aligns with the valley of the distribution, our approach still outperforms the bench-
marks as expected, albeit with smaller magnitude. This reduced improvement occurs because most customers are
inconsequential in this case — their prediction errors have minimal impact on targeting profitability —leaving limited
room for improvement due to the scarcity of consequential customers.
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mation errors, hindering the algorithm’s ability to identify consequential customers. Ultimately,
we recommend adopting a two-stage design with a larger proportion of customers sampled in the

tirst stage, especially when the overall sample size is small.
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Figure W-9: Proportional Profit Gaps of Different Experimental Designs: Bimodal Distribution
with Two Unequal Segments

We report the average value of the proportional profit gap across 100 replications. Each line corresponds to an experimental
approach.

Figure W-10 further shows the proportional profit gaps of the targeting policies learned by
different experimental designs under different sample allocation schemes. The results are qual-
itatively similar to the one with the baseline fixed batch size of 200. In particular, our approach
consistently outperforms the three benchmarks when the number of customers around the deci-
sion threshold is limited (i.e., c = —1). Notably, the performance of our approach remains similar
across both alternative allocation schemes (constant and decreasing batch sizes), indicating that

the specific allocation strategy has minimal impact on the effectiveness of our approach.
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Figure W-10: Proportional Profit Gaps of Different Experimental Designs under Alternative
Sample Allocation Schemes

We report the average value of the proportional profit gap across 100 replications. Each line corresponds to an experimental
approach.
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Figure W-11 illustrates the CATE distributions of sampled customers across varying interven-
tion costs for different approaches. The findings highlight how our method effectively identifies

and targets consequential customers with heightened intensity.
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Figure W-11: CATE Distributions of Customers Sampled by Different Approaches: Bimodal
Distribution with Two Unwqual Segments

Each line corresponds to the CATE distribution of the customers sampled by different approaches. The dashed line repre-
sents the intervention cost, which is also the decision threshold.
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D. Further Details of Empirical Application

D.1. Summary Statistics and Randomization Check for Telecommunication Dor-

mant Reactivation Campaign

Table W-2 presents the summary statistics of the pre-treatment covariates for the telecommunica-
tion campaign data. Additionally, we perform a weekly randomization check to verify the correct
implementation of the randomization process.*® The results indicate proper randomization, with
no significant differences observed between the treatment and control groups across most vari-

ables and weeks.

D.2. Summary Statistics and Randomization Check for Starbucks Promotional Cam-
paign

Table W-3 presents the summary statistics of the pre-treatment covariates for the Starbucks data.
We also conduct randomization check to verify the correct implementation of the randomization
process. The results suggests proper randomization, as there are no significant differences be-

tween the treatment and control groups in most of the variables.

D.3. Implementation Details
D.3.1. Default (A/B Test with Random Sampling)

For each experimental size Ng, we randomly sample Ng customers from the customer base Z.
Since the treatment assignments in the original data are properly randomized, we use the treat-
ment assignment from the original data as the final treatment assignment for each sampled cus-
tomer in our experimentation. For CATE estimation, we construct a Causal Forest model (Wager
and Athey 2018) implemented using the econML package in Python. This model consists of 300

trees with a maximum depth of 5 to prevent overfitting.

D.3.2. Uncertainty Sampling

For each experimental size N5, we partition the full sample into é\é—% batches, each containing 500
customers, to streamline the evaluation process. Additionally, we evaluate alternative sample al-

location schemes (constant batch size and decreasing batch size over 10 batches) to assess their

3Gince customers were randomized on a weekly basis, the randomization check is conducted at the weekly level.
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Table W-2: Summary Statistics of Telecommunication Dormant Reactivation Campaign

Variable Type Mean  Std. Median
cancellation usage (7 days)  Continuous -0.953 11.043 0.0

cancellation usage (14 days) Continuous -1.971 22.152 0.0
cancellation usage (30 days) Continuous -4.562 47.362 0.0

dawli usage (7 days) Continuous  0.952  8.049 0.0
dawli usage (14 days) Continuous 2.224 13.241 0.0
dawli usage (30 days) Continuous 10.004 31.863 0.0
recharge (7 days) Continuous 0.449  5.830 0.0
recharge (14 days) Continuous  2.017  13.950 0.0
recharge (30 days) Continuous 16.778 51.037 0.0
rental usage (7 days) Continuous  1.169  11.725 0.0
rental usage (14 days) Continuous 2433  23.419 0.0
rental usage (30 days) Continuous 6.419  50.742 0.0
total usage (7 days) Continuous 1479  9.483 0.0
total usage (10 days) Continuous 2.205 12.266 0.0
total usage (14 days) Continuous  3.532  16.132 0.0
total usage (30 days) Continuous 18236 45.200  1.050

transfer fee usage (7 days) =~ Continuous 0.002  0.052 0.0
transfer fee usage (14 days) Continuous 0.004  0.104 0.0
transfer fee usage (30 days) Continuous 0.019  0.396 0.0

general usage (7 days) Continuous 0.310  3.417 0.0
general usage (14 days) Continuous  0.842  6.081 0.0
general usage (30 days) Continuous 6.355 25.405 0.0

impact on performance. For customers within each batch b, we use the original treatment assign-
ment in the data as their final treatment assignment.

For uncertainty estimation, as well as for the final CATE estimation, we utilize a Causal Forest
model implemented using the econML package in Python. This model consists of 300 trees with
maximum depths not exceeding 5. We estimate the uncertainty associates with the CATE esti-
mates 0(%g-1(x)) by computing the standard deviation across the predictions generated by each

tree.
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Table W-3: Summary Statistics of Starbucks Promotional Campaign

Variable Type Mean Std. Median
V1=0 Discrete 0.1256 - -
Vli=1 Discrete 0.3757 - -

Vi=2 Discrete 0.3735 - -
Vi=3 Discrete 0.1252 - -

V2 Continuous 29.9779 5.0009 29.9796
V3 Continuous 0.0 1.0 -0.0395
V4=1 Discrete 0.3200 - -

V4=2 Discrete 0.6800 — -

V5 =1 Discrete 0.1837 - -
V5=2 Discrete 0.3693 - -
V5=3 Discrete 0.3855 - -
V5=4 Discrete 0.0615 - -
Vé6=1 Discrete 0.2491 - -
V6=2 Discrete 0.2490 - -
V6=3 Discrete 0.2508 - -
V6=4 Discrete 0.2510 - -
V7 =1 Discrete 0.2975 - -
V7=2 Discrete 0.7025 - -

D.3.3. Proposed Approach with Multiple Stages

For each experimental size Ns, we partition the full sample into é\é—% batches, each containing 500
customers, to streamline the evaluation process. Additionally, we evaluate alternative sample al-
location schemes (constant batch size and decreasing batch size over 10 batches) to assess their
impact on performance. For customers within each batch b, we use the original treatment assign-
ment in the data as their final treatment assignment.

For EPL estimation, as well as for the final CATE estimation, we utilize a Causal Forest model
implemented using the econML package in Python. This model consists of 300 trees with maximum

depths not exceeding 5.
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D.3.4. Proposed Approach with Two Stages

For each experimental size Ng, we consider three different proportions of customers r to sample

in the first stage (v € {0.5,0.7,0.9}) and follow a two-stage sampling approach:
1. In the first stage, we randomly sample 7 - Ns customers from the customer base 7.

2. In the second stage, we sample the remaining (1 — ) - Ns customers who have the highest

EPL estimated from the first stage.

3. For customers sampled in both stages, we use the original treatment assignment in the data

as their final treatment assignment.

For EPL and final CATE estimation, we employ a Causal Forest model implemented using the
econML package in Python. This model comprises 300 trees with maximum depths not exceeding

5.

D.4. Additional Results for Alternative Sample Allocation Schemes

In this appendix, we present additional results examining alternative sample allocation schemes
for the two empirical applications. Specifically, for the multi-stage design, we evaluate two sample
allocation approaches: constant batch size and decreasing batch size over 10 batches. In addition,
we explore three different configurations of the two-stage design by varying the proportions of
customers r to sample in the first stage (r € {0.5,0.7,0.9}) and compare their performance with

the multi-stage design.

D.4.1. Alternative Sample Allocation Schemes for Multi-Stage Design

Figure W-12 and Figure W-13 present the results of targeting policies learned under different
sample allocation schemes for the two empirical applications, respectively. The results are qual-
itatively similar to those obtained with the baseline fixed batch size of 500. In particular, our
approach consistently outperforms the default method when the intervention creates a risk of
cannibalizing profits that would have been earned without intervention (the telecommunication
application and the 50% discount scenario for Starbucks). For uncertainty sampling, our approach
performs comparably in the telecommunication case due to high overlap in selected customers,

but outperforms it in 50% discount scenario for Starbucks application. Moreover, both allocation
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schemes yield similar performance across scenarios, providing further evidence that the specific

allocation strategy has minimal impact on the effectiveness of our approach.
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Figure W-12: Performance of Targeting Policies Learned from Different Multi-Stage Designs
(Telecommunication)

We report the average value of the proportional profit improvement relative to the uniform policy across 100 replications.
Each line corresponds to an experimental approach.

D.4.2. Alternative Configurations for Two-Stage Design

Figure W-14 and Figure W-15 present the results of targeting policies learned by a multi-stage de-
sign and three two-stage design of our approach under different configurations (r € {0.5,0.7,0.9}).
In general, the proportion of customers sampled in the first stage does not substantially impact

the overall performance of the two-stage design.
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Figure W-13: Performance of Targeting Policies Learned from Different Multi-Stage Designs
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We report the average value of the proportional profit improvement relative to the uniform policy across 100 replications.
Each line corresponds to an experimental approach.
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We report the average value of the proportional profit improvement relative to the uniform policy across 100 replications.
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