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Abstract

Firms increasingly rely on A/B testing to evaluate marketing strategies, yet most
experiments are analyzed in isolation, limiting insight into why effectiveness varies
and how repeated exposure shapes outcomes. We develop a hierarchical Bayesian
framework that jointly analyzes randomized marketing interventions to decompose
treatment effect heterogeneity into three components: customer responsiveness, cam-
paign design, and contextual timing. The model is scalable, incorporates both ob-
served and unobserved variation, and links estimation directly to policy evaluation
with full uncertainty quantification. Using data from large-scale field experiments
involving nearly half a million customers, we document three main findings. First,
unobserved customer-level heterogeneity accounts for the majority of variation in
treatment effects, explaining roughly two-thirds of the total dispersion, far exceed-
ing the contribution of campaign design or timing. Second, we find strong evidence
of intervention fatigue: responsiveness declines with repeated exposure and recovers
only slowly. Third, in a held-out policy evaluation, a model-based targeting strategy
improves revenue on average while substantially reducing the share of customers tar-
geted, with gains reaching over 10% in settings where experimental variation is most
informative. Approximately 80% of these gains are driven by personalization based
on latent customer responsiveness rather than observable characteristics. Together,
these results demonstrate how repeated experimentation can be leveraged to explain
variation in marketing effectiveness and to support scalable targeting and personal-
ization.
Keywords: Marketing interventions, heterogeneity, field experiments, Bayesian mod-
eling, treatment effect decomposition, targeting.



1. Introduction

Understanding the impact of marketing interventions is a central challenge in marketing.

In an era characterized by ubiquitous experimentation and increasing opportunities for

personalization, firms frequently deploy A/B tests to evaluate and optimize their market-

ing strategies. Despite the widespread adoption of these experiments, the effectiveness of

marketing actions remains highly variable across campaigns, consumers, and over time

(e.g., Lodish et al. 1995; Gordon et al. 2019; Ellickson, Kar, and Reeder III 2023). For

marketing managers, understanding the sources of this variation is critical for making in-

formed decisions regarding resource allocation, campaign design, and the development

of effective personalization strategies.

Notwithstanding the rise of large-scale experimentation in domains such as e-commerce,

telecommunications, web-design and digital marketing, current practice tends to analyze

each campaign in isolation (e.g., Lodish et al. 1995; Kohavi and Longbotham 2023; Ellick-

son, Kar, and Reeder III 2023). While this approach provides an internally valid assess-

ment of causal effects, it does not leverage the possible insights that can be gained and

actions that can be taken by jointly analyzing information across campaigns. A cross-

campaign perspective allows researchers and managers to uncover systematic patterns

that are difficult or impossible to discern when experiments are evaluated independently.

Specifically, it can shed light on several substantive and strategic questions.

First, what are the dominant sources of variation in marketing effectiveness? Are

differences in outcomes primarily driven by campaign design, such as the promotion

offered or targeting schema, by the timing of the campaign, or the preferences of the cus-

tomers being targeted? Second, to what extent is this variation systematic and therefore

predictable? For instance, are some customers inherently more responsive to market-

ing, perhaps due to unobserved characteristics or strategic behavior that enable them

to extract more value from firm-initiated interventions? Third, what are the dynamic

consequences of repeated exposure to marketing interventions over time — specifically,
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how responsiveness varies with customers’ prior exposure histories (Mela, Jedidi, and

Bowman 1998; Kopalle, Mela, and Marsh 1999)? Does the increasing contact frequency,

facilitated by ongoing experimentation, diminish customer responsiveness and, in turn,

reduce the long-run efficacy of marketing efforts?

This paper addresses these questions by leveraging data from repeated randomized

interventions and estimating a hierarchical Bayesian model that jointly analyzes the het-

erogeneous treatment effects within and across campaigns and decomposes them across

three distinct dimensions: the design of the campaign, the contextual timing of its deliv-

ery, and the intrinsic responsiveness of individual customers. The proposed framework

allows us to jointly estimate these components, accommodating both observed and unob-

served sources of heterogeneity. The Bayesian approach is particularly well suited to this

context, as it naturally incorporates uncertainty and enables the recovery of latent struc-

ture from sparse or unbalanced distributed exposure histories. We apply this framework

to a comprehensive dataset from a large telecommunications provider, including more

than a hundred randomized marketing interventions over a two-year period. The rich-

ness and scale of these data permit a fine-grained investigation of how responsiveness

varies across individuals, campaigns, and time.

The empirical results yield several key findings. First, we document that the majority

of treatment effect variation across campaigns is attributable to customer-level hetero-

geneity. This heterogeneity is largely unobserved, persisting even after conditioning on a

broad set of behavioral covariates. Second, while campaign design and contextual timing

contribute meaningfully to variation in effectiveness, their relative importance is substan-

tially smaller. Third, we provide strong evidence of behavioral saturation (Mela, Jedidi,

and Bowman 1998; Kopalle, Mela, and Marsh 1999; Sahni 2015): customer responsive-

ness declines with repeated exposure to interventions, and recovery over time is modest

at best. This pattern highlights the risks associated with frequent experimentation and

targeting and underscores the need for strategic pacing of marketing contact.
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Importantly, we also demonstrate that these insights have material implications for

targeting. A policy that leverages our model to prioritize customers with positive pre-

dicted treatment effects improves performance relative to both the firm’s existing policy

and a benchmark that assigns treatment at random. While average gains are modest

when aggregated across all campaigns, they vary substantially across settings. In par-

ticular, wIn particular, we find larger targeting gains for campaigns that encouraged a

behavioral response from the customer, like re-engagement or cross-sell, and for inter-

ventions that maximize the exploitation of insights through a balanced randomization,

leading to over 10% gains for certain campaigns.e gains reveals that approximately 83%

of the improvement is driven by unobserved customer-level responsiveness, rather than

by observable campaign characteristics or timing effects. These results underscore the

value of integrating information across experiments to uncover latent sources of respon-

siveness that are inaccessible to standard per-campaign analyses.

In sum, our findings highlight the value of leveraging information across repeated ex-

perimentation both for a better understanding of what makes a campaign work, but also

to uncover how such insights can be translated into actionable personalization strategies.

By modeling repeated experimentation as a unified data-generating process rather than

a collection of isolated tests, our framework identifies the key drivers of effectiveness,

quantifies their relative importance, and informs scalable targeting policies that account

for both observed and unobserved heterogeneity. Together, these insights position re-

peated experimentation as a foundation for more systematic learning and more effective

personalization in marketing practice.

Collectively, this research makes three primary contributions. Substantively, we ad-

vance the literature on marketing effectiveness by leveraging multiple experiments to

decompose treatment effect heterogeneity into interpretable components, allowing us to

quantify the relative contributions of customer-level variation, campaign design, and con-

textual timing. While prior work has widely acknowledged heterogeneity in response to
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marketing interventions (e.g., Zantedeschi, Feit, and Bradlow 2017; Gordon et al. 2019;

Ellickson, Kar, and Reeder III 2023; Hitsch, Misra, and Zhang 2024), systematic mea-

surement of its sources and their relative importance has been rare. Existing studies and

meta-analyses primarily partition variation by campaign/channel or context, for exam-

ple, decomposing promotional “bumps,” explaining cross-study elasticity differences, or

comparing mix elements and multichannel effects (van Heerde, Leeflang, and Wittink

2004; Bijmolt, van Heerde, and Pieters 2005; Ataman, van Heerde, and Mela 2010), not

considering customer-level heterogeneity. Our analysis fills this gap and shows that the

dominant source of variation is unobserved customer-level heterogeneity, alongside be-

havioral dynamics from repeated exposure, thereby informing theories of customer het-

erogeneity, intervention fatigue, and the strategic pacing of marketing campaigns.

From a managerial perspective, we demonstrate how firms can benefit from aggregat-

ing insights across multiple experiments, rather than evaluating each A/B test in isola-

tion. Our approach estimates individual-level responsiveness to marketing interventions

and enables more effective data-driven targeting strategies (Rossi, McCulloch, and Al-

lenby 1996; Ascarza 2018; Ellickson, Kar, and Reeder III 2023; Hitsch, Misra, and Zhang

2024). We show that meaningful performance gains in incremental revenue can be achieved

through cross-experimental analysis.

Methodologically, we propose a scalable Bayesian framework that not only estimates

treatment effect heterogeneity but also links these estimates directly to policy evalua-

tion. To our knowledge, this is among the first approaches to explicitly combine Bayesian

inference with large-scale experimental analysis for marketing applications. By looking

across many experiments, our approach combines the causal-inference advantages of ran-

domized experimentation with the longitudinal richness of repeated observational data.

Bayesian methodologies are particularly effective in such settings, as they can pool in-

formation across related observations to capture unobserved sources of heterogeneity,

dynamic structures, and the multiple drivers underlying observed outcomes (Rossi, Mc-
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Culloch, and Allenby 1996). Hence, our approach leverages the strengths of Bayesian

estimation for repeated experimentation, using hierarchical structure to integrate infor-

mation across interventions while preserving the internal validity of each experiment. By

combining these elements, our framework extends existing off-policy evaluation methods

by incorporating full posterior uncertainty, allowing decision-makers to quantify both the

expected value and the associated risk of alternative targeting policies. As a result, our

approach connects model predictions to actionable business outcomes. Whereas prior re-

search typically relies on point estimates or deterministic model-based evaluations, our

framework produces posterior distributions of policy outcomes based on holdout data,

enabling more robust and risk-aware decision-making.

The remainder of the paper is organized as follows. Section 2 reviews related work.

Section 3 outlines the empirical context and data. Section 4 introduces the hierarchical

Bayesian framework, including model specification, estimation procedure, and validation

strategy. Section 5 reports the main findings and evaluates their implications for targeting.

Section 7 decomposes treatment effect heterogeneity into customer, campaign design, and

contextual factors. Section 8 concludes with implications and limitations.

2. Literature

This research builds on and extends several streams of work in marketing, including stud-

ies of marketing effectiveness decomposition, long-term effects of promotion sensitivity,

heterogeneous treatment effects, personalization, and learning from past experiments.

Variation and Dynamics of Promotion Sensitivity A central theme in marketing re-

search is understanding the effectiveness of promotional interventions and the variation

in their impact across individuals and contexts. Prior work documents how marketing

actions influence outcomes such as brand switching, purchase timing, and consumption

incidence (Gupta 1988; Bell, Chiang, and Padmanabhan 1999; Chan, Narasimhan, and
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Zhang 2008), but has paid less attention to decomposing the sources of that variation in a

causal-experimental setting. We shift the focus from decomposing behavioral outcomes

to decomposing treatment effects, quantifying how much of the variation in promotional

effectiveness arises from differences across consumers, intervention designs, and contex-

tual timing. This distinction is critical: it moves beyond describing what happened to

explaining what features of the campaign, timing, or audience make seemingly similar

interventions yield divergent results.

A large body of literature also shows that repeated exposure generates dynamic re-

sponses (e.g., stockpiling, reduced effectiveness, delayed purchases) (e.g., Mela, Gupta,

and Lehmann 1997; Mela, Jedidi, and Bowman 1998; Kopalle, Mela, and Marsh 1999),

with the magnitude depending on timing and frequency (Gupta 1988). While these dy-

namics are often studied in secondary data, we extend this work to the realm of repeated

field experiments, showing that responsiveness systematically deteriorates with repeated

interventions, even when designs differ, highlighting intervention saturation. Our find-

ings echo nonlinear exposure effects in advertising (Sahni 2016) and aligns with recent

evidence of behavioral fatigue in sequential experiments (Shchetkina and Berman 2024).

Heterogeneity in Treatment Effects and Unobserved Responsiveness The person-

alization literature increasingly estimates heterogeneous treatment effects (HTEs) to guide

targeting (e.g., Ascarza 2018; Imai and Li 2021; Yoganarasimhan, Barzegary, and Pani

2023). Recent advances use ML to estimate CATEs and evaluate policies based on pre-

dicted responsiveness (Ellickson, Kar, and Reeder III 2023; Hitsch, Misra, and Zhang

2024; Huang and Ascarza 2024). However, most studies analyze one experiment at a time,

thereby emphasizing observed heterogeneity and obscuring how much variation stems

from customers versus campaign design or delivery context. Our approach complements

this work by jointly analyzing many experiments and explicitly decomposing HTEs into

customer-, campaign-, and context-level components. Crucially, the multi-experiment,
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hierarchical Bayesian design allows us to recover unobserved individual responsiveness

(beyond observed covariates) and to use it for targeting, addressing calls to open the

“black box” of omitted moderators (Krefeld-Schwalb, Sugerman, and Johnson 2024). This

emphasis on unobserved, persistent responsiveness naturally motivates a hierarchical

Bayesian framework, which provides the structure necessary to capture such latent het-

erogeneity and to propagate uncertainty through to decision-making; as we discuss in

greater detail below.

Leveraging Multiple Experiments for Learning and Personalization While most field-

experimental research analyzes each experiment in isolation, several recent studies have

begun to explore how information can be shared across experiments to enhance infer-

ence and targeting performance. Zantedeschi, Feit, and Bradlow (2017) develop a hier-

archical Bayesian model of multichannel advertising response that pools data across re-

peated holdout campaigns to estimate channel-specific carryover and cross-channel syn-

ergies. While their focus is on understanding advertising dynamics across channels, our

approach similarly leverages repeated randomized interventions but has a different ob-

jective: rather than modeling channel carryover, we use cross-experimental pooling to

decompose treatment-effect heterogeneity into three interpretable components—customer,

campaign, and temporal context — and to link these components directly to policy eval-

uation.

Ellickson et al. (2025) extend causal prediction to unstructured treatments such as email

subject lines. Their framework encodes textual content via contextual embeddings and

combines these embeddings with doubly robust causal scores to predict the performance

of novel messages, integrating generative AI to create and evaluate new content. Our

work addresses a distinct problem. We study structured marketing interventions repeatedly

randomized over time and use a hierarchical Bayesian decomposition to quantify where
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and why effectiveness varies, across customers, designs, and timing, rather than predicting

outcomes for new, untested creative content.

Huang, Ascarza, and Israeli (2024) and Ibragimov et al. (2025) also leverage infor-

mation across experiments, but do so through transfer-learning approaches. Huang, As-

carza, and Israeli (2024) propose a two-stage causal machine-learning framework that

synthesizes past experiments using doubly robust scores and deep representation learn-

ing, enabling prediction of effects for new interventions. Ibragimov et al. (2025) develop a

Bayesian probabilistic matrix factorization method that transfers knowledge across cam-

paigns at the segment level, explicitly accounting for uncertainty in pre-estimated segment-

level treatment effects. Our framework differs from these approaches in both unit of anal-

ysis and goal. We estimate individual-level treatment effects directly from raw random-

ized data across many interventions, rather than relying on segment-level summaries or

observed design features. Instead of predicting or transferring outcomes to new inter-

ventions, we provide a decomposition-based explanation of what drives variation, identify-

ing whether transferable structure arises primarily from customer responsiveness, cam-

paign design, or contextual timing. This decomposition yields interpretable diagnostics

on where learning from prior experiments generalizes and where it does not, thereby

informing both targeting and pacing decisions.

In this sense, our study contributes a complementary and interpretable perspective on

cross-experimental learning. By isolating the relative contributions of different sources

of heterogeneity, we clarify what lessons from past experiments are stable and action-

able. This aligns with the broader call for using experimentation as a foundation for

personalization under uncertainty (Athey, Wager, and Syrgkanis 2021) and complements

counterfactual-modeling approaches that emphasize adaptive targeting and design (Dell’Acqua,

Cohen, and Zhou 2021).
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Bayesian Perspective and Policy Evaluation Hierarchical Bayesian models have long

been used in marketing to capture individual heterogeneity and improve estimation ef-

ficiency (e.g., Rossi, McCulloch, and Allenby 1996; Zantedeschi, Feit, and Bradlow 2017).

We build on this tradition by extending Bayesian estimation to the context of large-scale

experimental data and linking it explicitly to policy evaluation. Our framework propa-

gates posterior uncertainty from the estimation of heterogeneous treatment effects to the

evaluation of targeting policies, allowing decision-makers to quantify both expected per-

formance and its associated uncertainty. For validation and policy-value assessment, we

employ rank-weighted estimands such as the Targeting Operating Characteristic (TOC)

and its area under the curve (AUTOC; Yadlowsky et al. 2025), which measure how ef-

fectively the model ranks customers by expected incremental impact. Whereas most off-

policy evaluations rely on point estimates or plug-in frequentist metrics, our Bayesian

formulation produces a posterior distribution of policy outcomes, supporting more ro-

bust and risk-aware decision-making.

In sum, our work differs from existing multi-experiment and transfer-learning ap-

proaches by (i) estimating individual-level causal effects across many randomized interven-

tions and decomposing their variation into customer, campaign, and temporal components,

including unobserved responsiveness, and (ii) connecting this decomposition directly to

posterior, uncertainty-aware policy evaluation. This combination provides a scalable and in-

terpretable foundation for learning from repeated experimentation and for designing tar-

geting and pacing policies that balance value creation with confidence in expected out-

comes.

3. Empirical Setting and Data

Empirical setting. We use data from a large telecommunications provider in the Mid-

dle East that regularly sends promotional text-based SMS offers to its customers. We fo-
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cus on its prepaid mobile segment, which constitutes the majority of the firm’s customer

base. A key feature of this empirical setting is the firm’s systematic use of randomized ex-

perimentation: virtually all marketing campaigns include a randomized holdout group,

providing a unique opportunity to examine the impact of repeated interventions at scale.

Data overview. The dataset spans approximately two years (96 weeks) and includes

about 580,000 customers. During this period, the firm developed 140 distinct marketing

campaigns, each defined by its objective, creative design, and eligibility rules (e.g., some

targeted dormant users, whereas others focused on recent adopters of a specific tool or

service). Each campaign could be deployed multiple times as weekly interventions, im-

plemented in the form of randomized A/B tests. At the beginning of each week, the

marketing department selected which campaigns from the portfolio of 140 would be ac-

tivated. For each selected campaign, eligible customers were identified according to the

campaign-specific qualification rule. Subsequently, each eligible customer was randomly

assigned to either treatment or control.1 Thus, control customers are those who qualified

for a campaign in a given week but did not receive the intervention.

Throughout the paper, we distinguish between campaigns and interventions. A cam-

paign refers to a unique marketing design defined by its objective, action, and reward.

An intervention refers to the weekly execution of a campaign, during which eligible cus-

tomers are randomly assigned to treatment or control. Thus, a single campaign can gen-

erate multiple interventions over time, depending on how frequently it is deployed. This

distinction is important because it enables us to separate variation due to campaign de-

sign from variation driven by timing or customer composition, which is central to our

decomposition of marketing effectiveness.

Similar to other firms in this sector, the focal company has a large customer base

and engages in continuous promotional activity. On average, we observe nearly 70 inter-

1We corroborate that randomization at the intervention level was successful.
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ventions per week, involving approximately 88,700 customers (treatment or control) each

week. As described, each unique campaign design is implemented multiple times over

the observation window. Figure 1 summarizes the size and treatment propensity of each

campaign, aggregated across all weeks. The number of customers participating in a given

campaign varies substantially, ranging from about 13,000 to over 263,000 (Figure 1a). On

average, the allocation of eligible customers to the treatment condition is roughly 79%

(Figure 1b).

(a) Number of customers per campaign.
(b) Proportion of customers in the treat-
ment condition.

Figure 1: Campaign activity
The figure on the left shows the distribution of number of customers per campaign, including both treatment
and control customers, across all campaigns in the data. The figure on the right shows the distribution of the
proportion of customers in the treatment (versus control) condition.

Campaign Characteristics. Each campaign is defined by a set of features reflecting

both managerial intent and executional design. Specifically, we classify campaigns along

three main dimensions: goal, action, and reward.

The goal refers to the strategic objective of the campaign, such as reactivation (e.g.,

“wake-up”), cross-selling, or retention. The action dimension captures the behavior the

customer must undertake to receive the benefit, typically involving account recharge or

the purchase of a data pack. The reward specifies the type of incentive offered, most
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commonly in the form of a credit balance (usable across services) or a promotional balance

(restricted in usage). Figure 2 summarizes the campaign characteristics in our data.

Figure 2: Types of campaigns
Proportion of (unique) campaigns with a particular Goal, Action, and Reward, respectively.

Because interventions are repeatedly drawn from a pre-defined portfolio (decided by

the marketing team at the focal organization) and implemented across different points

in time, the same campaign design appears multiple times in the dataset. This recurring

structure allows us to observe treatment effect variation across campaign designs, time

(capturing contextual factors), and customer segments. Table 1 provides the summary

statistics across campaign designs.

Table 1: Campaign summary statistics.
Summary statistics for the campaign data. Campaign features are first aggregated at the campaign level, then
summarized across campaigns.

Avg. Std.Dev. Min. Max. N
# qualified users 88,707 58,255 13,016 263,262 140
% targeted 0.79 0.04 0.58 0.86 140
# weeks implemented 69.6 22.6 17.0 96.0 140

Campaigns also include a qualification rule that determines which customers (among

the entire customer base) are eligible to be considered for treatment in a given week.

These rules are defined by the firm and are based on observable behavior (e.g., no recharge

activity in the past seven days). Importantly, once a customer qualifies for a campaign,
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assignment to treatment or control is fully randomized (see more details in Section 4.2),

enabling us to consistently estimate treatment effects.

Repeated Observations per Customer. A distinctive feature of this empirical setting

is the repeated exposure of customers to randomized marketing interventions. Over the

approximately 2-year observation window, each customer appears in multiple interven-

tions, either in the treatment or control group.2 Note that customers could not be assigned

to more than one campaign in the same week. On average, a customer is associated with

28 such interventions, though this number varies substantially across individuals (Fig-

ure 3).

Figure 3: Number of interventions per user
Histogram of the number of interventions a customer participated in (either as treatment or control).

This repeated-measures structure is not uncommon in digital companies that fre-

quently run A/B tests on their customers, and is central to our analysis. It enables us to

track the same individual across different campaign designs, contextual conditions, and

varying temporal distances from prior interventions. As a result, we observe substantial

within-customer variation that can be exploited to estimate individual responsiveness

2Over time, customers can be exposed to the same or different campaign designs, depending on their
qualification status.
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and to evaluate dynamic patterns in treatment effects, including potential intervention

saturation.

Because eligibility is determined week by week through predefined deterministic be-

havioral rules, and treatment is randomly assigned conditional on eligibility, we can iso-

late causal effects within each intervention while aggregating evidence across campaigns

to assess the consistency of individual responses. This structure allows us to move be-

yond campaign-level analysis and quantify heterogeneity in responsiveness at the cus-

tomer level, both within and across intervention types.

Customer Characteristics and Outcomes of Interest. Our primary behavioral out-

come is the total monetary value recharged by a customer in the 30 days following an

intervention, which reflects the focal firm’s key performance indicator. To account for

pre-existing differences in purchasing behavior, we also observe recharge value in the 30

days preceding the intervention and define our main dependent variable as the change

in recharge value relative to this pre-intervention baseline.

For each customer–campaign instance, we observe a set of pre-treatment behaviors.

Prior to each intervention, we capture customers’ usage (in minutes) over multiple look-

back windows (7, 14, and 30 days), which serve as proxies for recent engagement and

potential eligibility. We also observe several features that characterize customers’ promo-

tional history. For each campaign, we know whether the customer was treated or held

out, the timing of that exposure, and the cumulative history of campaign participation.

These features (e.g., time since last campaign, cumulative number of prior campaigns,

and recent usage) capture key dimensions of prior exposure and its relationship to subse-

quent responsiveness. We do not observe customers’ demographic or socioeconomic in-

formation. Table 2 summarizes the distribution of these characteristics across customers.
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Table 2: Customer summary statistics.
Summary statistics across customers. Variables are first aggregated at the customer level, then summarized
across customers.

Variable Mean SD Min Max N

Recharge next 30 days
Average 87.56 127.71 0 3334 584,141
Coefficient of variation 1.05 0.79 0 8

Usage past 7 days
Average 23.72 32.78 0 559 584,141
Coefficient of variation 1.48 0.93 0 8

Usage past 8–14 days
Average 23.02 31.94 0 550 584,141
Coefficient of variation 1.52 0.91 0 8

Usage past 15–30 days
Average 50.49 68.18 0 1115 584,141
Coefficient of variation 1.15 0.73 0 8

Tenure – # weeks since first intervention
Average 28.18 15.94 1 84 584,141
Coefficient of variation 0.33 0.18 0 2

Recency – # weeks since last intervention
Average 3.41 8.13 1 119 570,731
Coefficient of variation 0.72 0.51 0 4

Frequency – # interventions in the last 4 weeks
Average 1.95 0.64 0 4 584,141
Coefficient of variation 0.72 0.25 0 3

4. Modeling approach

Our objective is to leverage the structure of repeated randomized experiments to decom-

pose treatment effect variation across three distinct dimensions: the design of the inter-

vention, the timing of its delivery, and the responsiveness of individual customers. The

central modeling challenge is to appropriately pool evidence across these multiple inter-

ventions while capturing observed and unobserved heterogeneity, systematic effects of

campaign design, and contextual fluctuations over time.
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4.1. Model Specification

To quantify the drivers of heterogeneity in marketing effectiveness, we specify a hierarchi-

cal Bayesian model (Rossi, McCulloch, and Allenby 1996) that decomposes the response

to interventions into interpretable components at the customer, campaign, and temporal

levels. The model captures the impact of marketing interventions (A/B tests) on customer

demand (recharge amount) by decomposing marketing effectiveness into three sources of

variation:

• Customer-level effects: These capture both observed and unobserved heterogene-

ity in individual responsiveness to marketing interventions. The observed com-

ponent includes behavioral features such as recent usage patterns and prior expo-

sure to campaigns (i.e., recency, frequency, and monetary value metrics). The un-

observed component is modeled through random effects, allowing for persistent,

time-invariant individual differences that are not captured by observable features.

While analyzing campaigns one at a time allows heterogeneity to be captured based

on observed customer characteristics, a unique aspect of our work is the ability to

recover unobserved heterogeneity by jointly analyzing multiple experiments within

a Bayesian framework.

• Campaign-level effects: These capture systematic variation across interventions.

Each campaign is assigned a fixed effect that absorbs both its intrinsic appeal and the

selection mechanics induced by qualification rules, which are themselves a function

of prior behavior (e.g., time since last recharge).

• Time-level effects: These capture contextual variation common to all users and in-

terventions, including temporal shocks (e.g., macroeconomic events, internal schedul-

ing) and seasonality. Week-level fixed effects are included to control for such sys-

tematic temporal influences.
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Formally, let yij denote the outcome for customer i in intervention j, and Wij indicate

treatment assignment. The model is specified as:

yij = τijWij + β>i Xij + γ>Zij + εij, εij ∼ N (0, σ2), (1)

where Xij contains pre-treatment behavioral covariates (capturing baseline usage levels

and trends in past consumption), and Zij includes proxies for past exposure to promo-

tional activity as well as campaign and week fixed effects. Recall that interventions are

weekly executions of campaign designs; hence, the fixed effects decompose variation

across campaigns (design heterogeneity) and across interventions (temporal realizations

of those designs). Appendix A presents a list of all variables entering the model specifi-

cation.

The key quantity of interest is the treatment effect τij, which varies across observations

and is decomposed as:

τij = τ̄ + τt(j) + τc(j) + τ I
ij, (2)

where τ̄ is the population mean effect, τt(j) and τc(j) are week- and campaign-specific de-

viations, respectively, and τ I
ij denotes the individual-level deviation, capturing systematic

variation in treatment effects attributed to individual characteristics, both observed and

unobserved. We further write

τ I
ij = (γI)>Vij + uI

i , uI
i ∼ N (0, σ2

I ), (3)

where Vij captures observed heterogeneity as well as exposure-history–dependent re-

sponsiveness3, while uI
i captures unobserved individual differences.4

3We also include the proportion of customers who where allocated to the treatment condition in that
particular j.

4In this paper we use the term dynamic to refer to responsiveness that varies as a function of customers’
prior exposure to marketing interventions (e.g., recency and cumulative exposure), rather than to forward-
looking behavior or state-space dynamics.
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The vector Vij serves two related purposes. First, it captures heterogeneity associated

with observed consumption histories (e.g., differences in baseline activity levels). Second,

it allows treatment responsiveness to vary with prior exposure. To this end, Vij includes:

(i) discrete activity categories based on past 30-day usage quantiles, allowing for non-

linear effects of prior engagement; (ii) recency of prior treatment, defined as the number of

weeks since a customer last received any intervention, with a separate category for cus-

tomers who have never been treated; and (iii) treatment stock, defined as a geometrically

decayed sum of past treatments to capture cumulative exposure, with a weekly decay

factor of 0.75.5

To maintain flexibility while keeping the model tractable, we discretize both recency

and treatment stock. Recency is grouped into a small number of weekly bins, and treat-

ment stock is discretized into quintiles. We further include interaction indicators between

recency and stock, yielding a set of mutually exclusive exposure-history categories, along

with a separate category for never-treated customers. Full details on bin definitions and

construction are provided in Appendix A.

In sum, the model can be viewed as decomposing outcomes into three additive lay-

ers. First, baseline outcomes are explained by observed pre-treatment behavior and by

campaign- and week-level fixed effects, which absorb systematic differences in demand

across customer segments, campaign designs, and time periods. Second, the treatment

effects τij are allowed to vary flexibly across customers, campaigns, and weeks, with an

overall average effect τ̄ augmented by campaign-specific and week-specific deviations,

and an individual-level adjustment. Third, individual responsiveness itself is decom-

posed into an observed component, which depends on customers’ prior usage and expo-

sure history, and an unobserved component capturing persistent differences in sensitiv-

ity to marketing. Importantly, campaign and week effects enter the model twice. They

first control for baseline outcome differences, and then allow treatment effects to vary by

5Note that to construct (ii) and (iii) we only used interventions in which the customer was in the treat-
ment (as opposed to control) condition.
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campaign and timing, ensuring that heterogeneity in effectiveness is identified separately

from differences in underlying baseline outcomes.

4.2. Pooling Strategy

Our data comprise hundreds of interventions that vary in sample size, treatment–control

allocation, and qualification rules. These features require a careful pooling strategy when

estimating a single model across campaigns. Specifically, our approach addresses three

issues that arise in this setting: Simpson’s paradox, heterogeneity in campaign qualifica-

tion rules, and overlap across campaigns.

Simpson’s paradox. Simpson’s paradox may arise when treatment effects are aggre-

gated across interventions that differ in the composition of the underlying user popula-

tion. In experimental settings, this concern is particularly relevant when campaigns span

multiple time periods and treatment and control groups are exposed to systematically dif-

ferent mixes of users or contexts (e.g., weekdays vs. weekends, heavy vs. light users). In

such cases, the aggregate treatment effect may differ from, or even contradict, the within-

group effects (Crook et al. 2009). For example, a treatment may outperform control within

each period but appear less effective in pooled data if treated users are disproportionately

exposed during lower-performing periods.

To mitigate this concern, the level of aggregation in our model coincides with the unit

of randomization, namely the intervention–week. We further include week-level fixed

effects to absorb common contextual shocks and control for the proportion of users as-

signed to treatment within each intervention. This specification ensures that treatment

effect estimation is not confounded by shifts in user composition or temporal variation,

allowing us to separate persistent heterogeneity in responsiveness from transitory con-

textual effects (Kohavi and Longbotham 2023).
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Campaign qualification rules. A second consideration for pooling arises from qualification-

based targeting. Because campaigns differ in the behavioral criteria used to define eli-

gibility not every customer is eligible for every intervention. For example, a “wakeup”

campaign may target inactive users, whereas a “cross-sell” campaign may focus on recent

rechargers. Importantly, eligibility is determined exclusively by observable pre-treatment

behavior. That is, qualification is deterministic and known, and randomization into treat-

ment or control occurs only after the eligible sample has been defined.

Because treatment assignment is randomized within the eligible population, qualifi-

cation does not induce selection bias in the estimation of treatment effects. Conditional

on eligibility, treatment assignment is unconfounded, and standard randomization-based

inference applies. This feature, which is common in marketing interventions, does not

compromise internal validity when estimating causal effects within the qualified popula-

tion. Although qualification rules may limit the scope of counterfactual policy evaluation,

they do not affect identification of heterogeneous treatment effects relative to control (El-

lickson, Kar, and Reeder III 2023).

Accordingly, variation in qualification rules across campaigns does not interfere with

our decomposition of treatment effect heterogeneity. We capture variation in qualification

rules by campaign fixed effects, which capture both design-specific features and system-

atic differences in the composition of eligible users.

Overlap. A final consideration in our pooling strategy is whether stacking observations

across campaigns is meaningful. If campaigns were targeted to largely disjoint customer

subgroups, pooling would primarily combine unrelated sources of information, making

pooling unattractive. In contrast, overlap in user participation links campaigns through

shared customers, allowing estimation to leverage information across campaigns with

comparable assignment mechanisms and exposures.
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We assess this condition empirically using a graph-theoretic approach to examine the

campaign-user structure. Specifically, we construct a bipartite network, a two-mode graph

in which one set of nodes corresponds to campaigns and the other to users. An edge con-

nects a campaign to a user if that user was eligible for (and randomized into treatment or

control within) that campaign. This network captures the structure of campaign exposure

over time and serves as the foundation for our overlap analysis.

To evaluate overlap across campaigns, we project the bipartite network into a one-

mode campaign network. In this projection, two campaigns are connected if they share

at least one user, with edge weights equal to the number of shared users.6 The resulting

design network is an undirected, weighted, complete graph with 140 vertices and 9,730

edges, where edge weights reflect the extent of overlap in campaign audiences. We an-

alyze this network using standard descriptive measures from network analysis (Wasser-

man and Faust 1994).

Figure 4: Campaign network visualization, colored by attribute
Campaign network visualization. Campaigns are connected to each other when they share the same customers,
with edge weights capturing the amount of shared customers. Campaigns are colored by their Goal, Action,
and Reward attributes, respectively.

6In principle, one could instead project the network onto users, but the resulting graph would be very
large limiting its usefulness for the purpose of this campaing overlap analysis.
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We begin by visualizing the design network, coloring campaigns by their goal, reward,

and action attributes. As shown in Figure 4, nodes sharing the same attribute color

do not cluster spatially. Were customers concentrated within subsets of similar cam-

paigns, we would expect dense within-attribute connections and sparse cross-attribute

links, yielding distinct color-based clusters in the network. We further quantify this

lack of structure by examining assortativity and modularity with respect to campaign

attributes. Partitions based on goal, reward, and action exhibit modularity scores close

to zero (0.040, 0.000, and 0.010, respectively), indicating little alignment between network

structure and campaign attributes. Together, these analyses indicate that customers do

not cluster into isolated subsets associated with specific campaign types.

Finally, we apply multiple community detection algorithms, including Infomap (Ros-

vall and Bergstrom 2008), Label Propagation (Raghavan, Albert, and Kumara 2007), Lou-

vain (Blondel et al. 2008), and Walktrap (Pons and Latapy 2005). Community detection

tests whether the network exhibits any internally dense, externally sparse partition even

in the absence of observable campaign attributes. Infomap and Label Propagation detect

a single community, consistent with a densely connected network. Louvain and Walktrap

identify three and two communities, respectively; however, these communities overlap

substantially. Correlating community assignments with campaign attributes reveals no

systematic alignment between detected communities and campaign attributes.

Overall, the campaign network exhibits extensive overlap across campaigns, with no

evidence of segmentation by campaign attributes. This pattern indicates that campaigns

are linked through shared customers rather than forming isolated groups, suggesting that

stacking observations across the 140 campaigns is empirically meaningful. The proposed

Bayesian model is designed to exploit this shared information.
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Figure 5: Community detection analysis, colored by community membership
Infomap and Label Propagation (left), Louvain (middle), and Walktrap (right). All algorithms find either one
community or highly overlapping communities where campaign attributes are uniformly distributed across
communities.

4.3. Estimation and Inference

We estimate the model using a fully Bayesian approach via Gibbs sampling. Each pa-

rameter of the model (see Equations 1 – 3) is assigned a standard conjugate prior, which

enables efficient block-wise updates within each Markov Chain Monte Carlo (MCMC)

sweep. After convergence of the MCMC chain, we sample the posterior distribution of

the model parameters and base all subsequent analyses on these samples. Further imple-

mentation details are provided in Web Appendix A.2.1.

We randomly split the data (described in section 3) into a calibration and a holdout

dataset. To create the holdout dataset, we randomly select one observation per user as

holdout. We only consider users with at least 6 observations. Users with 5 observations

or less will not appear in the holdout sample. The calibration sample has approximately

16 million rows and includes about 584K unique customers. The holdout dataset includes

about 462K unique customers, and covers all 140 campaigns and all weeks that exist in

the calibration data.
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4.4. Examining the Predictive Ability of τij Posteriors

Of central importance is the posterior distribution of τij, the estimated treatment effect for

individual i at occasion j. As specified in Equation 2, this quantity incorporates multiple

sources of variation, including campaign-specific characteristics c(j), broader contextual

moderators such as week-level effects t(j), and individual-level variation, both observed

and unobserved. By jointly capturing these components, τij summarizes treatment effect

heterogeneity and forms the basis for our decomposition of variation across campaigns,

weeks, and users.

Before decomposing this variation, we assess whether the inferred individual-level

treatment effects (τij) capture meaningful information about underlying heterogeneity in

treatment response. To this end, we employ two complementary validation approaches.

First, we compute the AUTOC (Area Under the Targeting Operating Characteristic; Yad-

lowsky et al. 2025) to evaluate whether ranking customers by predicted treatment ef-

fects improves treatment prioritization. Second, we implement the Best Linear Prediction

(BLP) test, following Chernozhukov et al. (2025), to formally assess whether the model’s

predictions contain statistically detectable treatment-effect heterogeneity. Together, these

tests evaluate both the statistical content of the estimated heterogeneity and its relevance

for targeting decisions.

Area Under the Targeting Operating Characteristic. We begin by assessing whether

the model’s predicted treatment effects are informative for prioritization; that is, whether

customers ranked as more responsive by the model indeed realize larger treatment ef-

fects. The AUTOC (Area Under the Targeting Operating Characteristic), introduced by

Yadlowsky et al. (2025), provides a transparent metric for this purpose. AUTOC summa-

rizes how much incremental treatment effect a firm would obtain by targeting customers

in order of their predicted treatment effects τ̂ij, relative to the average treatment effect

(ATE) in a hold-out sample. If the model’s ranking aligns with true treatment-effect het-
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erogeneity, AUTOC is positive; if the predictions contain no informative signal, AUTOC

is close to zero.

Formally, AUTOC is constructed from the Targeting Operating Characteristic (TOC),

which evaluates, for every feasible targeting proportion (e.g., targeting the top 1%, 2%, . . . ),

the realized treatment effect among the highest-ranked customers. TOC values are ex-

pressed in the same units as the outcome (e.g., dollars of incremental revenue), facilitat-

ing direct economic interpretation. AUTOC aggregates these gains across all targeting

proportions. Intuitively, TOC captures performance at each cutoff, while AUTOC sum-

marizes overall targeting gains.

To account for estimation uncertainty, we compute AUTOC for each MCMC draw.

For every posterior draw of τ̂ij in the hold-out sample, we construct the TOC curve

by computing realized treatment effects for the top-ranked customers at each targeting

threshold. We then compute the area under this curve and repeat the procedure across

posterior draws and targeting thresholds, yielding a posterior distribution of AUTOC.

We find that the posterior distribution of AUTOC lies well above zero, indicating that

ranking customers by predicted treatment effects leads to systematically higher realized

gains in the hold-out sample. The posterior mean AUTOC is 1.92, with a 95% posterior

interval of [1.23, 2.48]. In economic terms, this implies that, on average across target-

ing proportions, the treatment effect among targeted customers exceeds the population

ATE by approximately $2 per customer. Thus, the results show strong evidence that the

model’s predictions contain actionable signals.

Best Linear Prediction (BLP) Test. We complement the AUTOC analysis with a sec-

ond validation exercise that directly tests whether predicted heterogeneity aligns with

realized treatment effects. The Best Linear Prediction (BLP) test of Chernozhukov et al.

(2025), adapted to randomized experiments by Athey, Keleher, and Spiess (2025), pro-

vides a parsimonious framework for this assessment. The intuition behind the BLP test

25



is straightforward. If the model’s predicted effects τ̂ij contain genuine treatment-effect

signal, then customers with higher predicted values should, on average, exhibit larger

realized treatment effects in the hold-out data. The BLP regression formalizes this intu-

ition by interacting each customer’s treatment indicator with their predicted effect, and

testing whether this interaction has a positive coefficient. A positive and significant inter-

action indicates that the model assigns higher scores to customers who benefit more from

treatment.

We implement the BLP test in a fully Bayesian manner. For each MCMC draw, we

estimate the BLP regression7 on the held-out sample and record the posterior draw of the

interaction coefficient. This yields a posterior distribution for the BLP slope, quantifying

the strength and uncertainty of the relationship between predicted and realized treatment

effects. The results confirm that the predictions encode meaningful causal signal. The

95% posterior interval for the BLP interaction coefficient is [0.04, 0.21], with a posterior

mean of 0.12, placing all posterior mass above zero. We therefore conclude that the model

captures systematic variation in treatment effects across customers.

Together, the AUTOC and BLP tests provide complementary evidence that the model

recovers economically meaningful and statistically detectable treatment-effect heterogene-

ity. This heterogeneity can be decomposed to address our central research questions re-

garding the relative roles of customer responsiveness, campaign design, and contextual

timing in driving variation in treatment effects, and can also be leveraged to improve

targeting performance, as we discuss next.

5. Model Insights

Having established that the estimated treatment effects τij capture meaningful treatment-

effect heterogeneity, we now examine how these effects vary systematically across cam-

7Equation (3.5) in Chernozhukov et al. (2025).
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paigns, weeks, and individuals. Recall that τij represents the estimated treatment effect

for individual i at occasion j (Equation 2). This quantity incorporates multiple sources

of variation, including campaign-specific characteristics associated with campaign c(j);

broader contextual factors such as events occurring in week t(j); the customer’s ob-

served state Vij, which summarizes prior consumption and recent marketing exposure;

and individual-level unobserved heterogeneity uI
i .

We organize the results by progressively examining these sources of variation. We be-

gin with campaign-level heterogeneity, then consider week-level differences, and finally

examine individual-level variation in treatment effects.

5.1. Campaign-Level Treatment Effect Variation

We first examine heterogeneity in average treatment effects across the 140 campaigns.

Because each campaign is deployed repeatedly across multiple weeks, we compute a

campaign-level average treatment effect by aggregating posterior draws of τij across all

calibration sample users and weeks associated with campaign c. This yields the posterior

distribution of campaign-average effects, denoted τ̄.c. Figure 6 presents the 95% posterior

intervals for τ̄.c, along with posterior means (dots), sorted from largest to smallest.

Posterior mean campaign effects range from approximately −2.8 to slightly above 3.

The distribution of posterior means is skewed toward positive values, as reflected in the

concentration of points to the right of zero. Accounting for posterior uncertainty, 10%

of campaigns exhibit posterior intervals entirely above zero, whereas 7.1% lie entirely

below zero. Negative effects are plausible in this setting, as some campaigns provide free

minutes or credit, which can generate short-run cannibalization or post-promotional dips

in spending.

Analyzing Campaigns in Isolation. One of the characteristics of our proposed ap-

proach of pulling information across campaign is that it should still preserve the origi-
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Figure 6: Posterior intervals for the 140 unique interventions
Posterior means (and 95% posterior intervals) for τ̄.c, which corresponds to the average effect of each campaign
c, integrated over the observed distribution of weeks and users.

nal within campaign average treatment effects (ATEs), since the within campaign effects

should be valid independent of the pooling strategy. To test whether our pooling strat-

egy preserves the original campaign ATEs we estimate a separate linear model for each

campaign c, using the same set of control variables as in the joint model to ensure com-

parability.

Figure 7 contrasts ATEs obtained from the joint hierarchical Bayesian model with

those obtained from campaign-by-campaign estimation. Panel (a) shows close alignment

along the 45-degree line, indicating that both approaches recover similar point estimates

for campaign-average effects. Panel (b), however, reveals systematic differences in pre-

cision. The coefficient of variation, measured as the ratio of the 95% posterior interval

width to the posterior mean, is generally smaller under the joint model, as reflected by

the concentration of points above the 45-degree line. This pattern indicates that pool-

ing information across campaigns yields more precise estimates, with uncertainty that is

smaller relative to effect magnitude.8

8This precision gain is also reflected in the share of campaigns with posterior mass away from zero.
When estimated separately, approximately 2.5% of campaigns appear significantly negative and 2.5% sig-
nificantly positive, as expected under sampling variability at the 2.5% and 97.5% tails. On the other hand,
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(a) Average Treatment Effect. (b) Coefficient of Variation.

Figure 7: Comparison of ATEs estimated jointly vs. in isolation across campaigns
Scatter plots of posterior means and coefficient of variation of τ̄·c from the joint HB model (horizontal axis) and
from campaign-by-campaign estimation (vertical axis). The 45-degree line is included for reference.

Taken together, these results show that our approach yields average treatment effects

comparable to those obtained from campaign-specific analyses. However, analyzing A/B

tests in isolation produces noisier campaign-level estimates. By jointly estimating all cam-

paigns, the hierarchical model delivers meaningful gains in statistical efficiency, resulting

in more precise estimates.

Effectiveness by Campaign Characteristics. Because we observe campaign attributes

such as goal, action, and reward, we next examine whether these features are systemati-

cally associated with campaign effectiveness.

To motivate the analysis, it is helpful to clarify the interpretation of τ̄.c. This parame-

ter is obtained by aggregating the posterior draws of τij (Equation 2) across all users and

weeks for a given campaign c. Thus, τ̄.c reflects the overall average effect of campaign c

on the outcome of interest. Importantly, its value is shaped not only by the campaign’s

intrinsic design but also by the weeks in which it was deployed and the users who partic-

under the joint model, 17.1% of campaigns exhibit posterior mass away from zero, reflecting increased
power to detect meaningful effects.
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ipated in each campaign-week. As a result, examining τ̄.c in isolation would mix design

effects with contextual and compositional factors.

Our model allows us to isolate these components. Specifically, we focus on the campaign-

specific term τc(j) from Equation 2, which captures the intrinsic effectiveness of campaign

design net of week- and user-level heterogeneity. We regress τc(j) on observed campaign

characteristics.9 This regression is estimated within each MCMC iteration, and we sum-

marize posterior intervals for the coefficients (Web Appendix C.1, Table App-2). We

find that “wake-up” interventions are significantly more effective relative to the aver-

age of other campaign goals: Goal=‘WakeUp’ has a posterior mean of 0.22 with a 95%

interval of [0.05, 0.39].10 On the other hand, campaigns requiring international actions

reduce spending: Action=‘International’ has a posterior mean of −0.26 with interval

[−0.43, −0.10]. Other campaign attributes do not exhibit systematic associations with

effectiveness.

5.2. Week-Level Treatment Effect Variation

We next examine systematic variation in treatment effects across weeks. To this end, we

analyze the posterior distribution of τt(j), corresponding to the week fixed effects in Equa-

tion 2. This component captures variation in treatment effectiveness that is uniquely at-

tributable to week-to-week differences. As with τc(j), τt(j) reflects temporal variation after

controlling for the specific campaigns deployed in each week and for the composition

of exposed customers, as summarized by their observed states of past consumption and

recent campaign activity.

9An alternative approach would be to include these characteristics directly as covariates in the structural
model and treat residual campaign effects as random. We instead estimate campaign “fixed effects”, which
are precisely identified given repeated observations of each campaign, and relate observed attributes to
effectiveness using posterior summaries.

10Consistent with this result, the data provider identified these campaigns, typically aimed at near-
dormant users, as their most effective interventions.
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Figure 8: Posterior intervals across 95 weeks
Posterior means and 95% posterior intervals for τt(j), representing the variation in marketing effectiveness
that is explained by the time component; that is, once the variation due to campaign design and customer
heterogeneity has been accounted for.

Overall, we find limited evidence of substantial week-to-week variation in treatment

effectiveness. Posterior means of τt(j) vary modestly, ranging from approximately −1

to 0.8, with most intervals overlapping zero (Figure 8). To test for a systematic trend,

we regress τt(j) on time t within each MCMC draw. We find that campaign effectiveness

has diminished slightly over time, although the effect is small in magnitude: the posterior

mean of the slope for t is−0.005 (95% posterior interval [−0.007,−0.003]). Taken together,

our findings suggest that aggregate market conditions and competitive dynamics were

relatively stable over the observation period.

5.3. User-Level Treatment Effect Variation

A central objective of this paper is to characterize heterogeneity in individual responsive-

ness to marketing interventions. Because we observe users across multiple interventions

over nearly two years, with repeated exposure to both treatment and control conditions,

it is in principle possible to estimate an individual-level causal treatment effect. Natu-
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rally, these estimates are subject to considerable uncertainty, given the relatively limited

number of observations per user compared with other model components. Nevertheless,

as we demonstrated in section 4.4, the individual-level effects may still reveal meaning-

ful heterogeneity. We therefore examine user-level heterogeneity by decomposing it into

observed heterogeneity (due to user characteristics), unobserved heterogeneity (system-

atic differences not captured by observables), and dynamics in responsiveness (possible

saturation) arising from repeated exposure of marketing campaigns.

Moderating Role of Past Consumption (observed heterogeneity). We begin by in-

vestigating how users’ prior consumption moderates their responsiveness to subsequent

interventions. To avoid imposing a parametric relationship between past usage and treat-

ment effects, we discretize past consumption and estimate the contribution of each usage

level to individual responsiveness (captured in γI , Equation 3). This approach allows for

flexible, potentially non-linear moderation by past consumption.

Figure 9: Posterior estimates of user-level responsiveness by levels of pre-treatment
usage
Posterior means and 95% intervals for coefficients γI across past-usage groups. Group 1 corresponds to the
lowest-usage users (median = 0 minutes in past 30 days), while group 7 corresponds to the highest-usage
users (median = 381 minutes in past 30 days).

The results in Figure 9 show non-linear observed heterogeneity, with treatment effects

ranging from approximately −5 to 2.5 across usage groups. For users in the lowest usage
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group (median 0 minutes in the prior 30 days), treatment effects are positive, whereas for

users in the highest usage group (median ≈ 381 minutes), treatment effects are clearly

negative. This pattern suggests that interventions stimulate consumption among low-

engagement users but may cannibalize revenue among high-usage users, for whom pro-

motions may substitute for spending that would have occurred in the absence of treat-

ment. The non-linear relationship underscores the importance of flexible specifications

for observed covariates.

Dynamics in Sensitivity to Interventions. Next, we examine how individual respon-

siveness varies with repeated exposure to marketing interventions and with the time

elapsed since the most recent contact. Recall that we allow for non-linear exposure-

history effects by discretizing both cumulative treatment exposure (treatment stock) and

recency of past interventions, and estimating the contribution of each category to the

individual treatment effect. Details on variable construction are provided in Web Ap-

pendix A.1.

Because responsiveness depends on interactions between recency and cumulative

exposure, we report marginal effects that average predicted treatment effects over the

empirical distribution of the interacting dimension. This approach isolates the partial

relationship between responsiveness and each exposure-history component. Figure 10

presents posterior distributions of the marginal effects associated with treatment stock

and recency, derived from the coefficients in γI . Two patterns emerge. First, respon-

siveness declines with cumulative exposure: users with higher treatment stock exhibit

attenuated treatment effects (Figure 10a). This pattern is consistent with intervention

fatigue, whereby repeated exposure reduces sensitivity to marketing contacts. Second,

responsiveness increases with time since the last intervention (Figure 10b), although re-

covery is gradual and incomplete. In practice, more than eight weeks without exposure

are required for responsiveness to approach its baseline level. Together, these results pro-
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(a) Treatment stock (b) Weeks since last intervention

Figure 10: Posterior estimates of user-level responsiveness by recency and treatment
stock
Posterior means and 95% credible intervals of treatment effects as a function of cumulative treatment stock
(panel a) and recency (panel b). Effects are computed by averaging over the recency–stock interaction terms
using the empirical distribution of the omitted dimension. For treatment stock (Figure a), group 1 corresponds
to the users with the lowest treatment stock (≈ 1.38 on average), while group 5 corresponds to the users with
the highest treatment stock (≈ 2.77 on average).

vide evidence of intervention fatigue with slow recovery, highlighting the importance of

pacing interventions to sustain long-run effectiveness.

Unobserved Heterogeneity. Next, we examine the parameter uI
i (Equation 3), which

captures persistent, unobserved individual-level variation in responsiveness after account-

ing for campaign design, week effects, eligibility, and observed customer characteristics.

In this sense, uI
i represents intrinsic differences in responsiveness across customers. Fig-

ure 11 displays the posterior intervals of uI
i for 250 randomly selected users.

The distribution of uI
i reveals substantial unobserved heterogeneity in customer re-

sponsiveness. A non-trivial share of customers (13.56%) exhibit posterior intervals en-

tirely above zero, indicating positive treatment effects even after conditioning on all other

model components, including campaign design, temporal effects, and observed covari-

ates. These users are systematically more responsive to interventions and generate in-
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Figure 11: Posterior estimates of user-level responsiveness
Posterior means and 95% posterior intervals for uI

i for 250 randomly selected users, representing unobserved
heterogeneity in campaign responsiveness.

cremental revenue as a direct consequence of treatment. From a managerial perspective,

this group represents a segment with persistently positive responsiveness that can be

prioritized for promotional targeting. Conversely, the share of customers with poste-

rior intervals entirely below zero is small (less than 1%), suggesting a limited subset of

users for whom interventions are counterproductive. Such behavior may reflect strategic

responses, such as delaying purchases in anticipation of promotions. At the same time,

repeated targeting may itself induce strategic behavior, altering responsiveness over time.

We examine these dynamic effects next.

6. Implications for targeting

Having established the presence of meaningful variation in treatment effects, we assess

its managerial relevance by evaluating whether this heterogeneity can improve targeting

decisions. We conduct a policy evaluation comparing a strategy that, for a given inter-

vention, prioritizes customers based on posterior draws of τij with a benchmark random

allocation from the set of eligible customers. Our counterfactual targeting procedure pro-
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ceeds as follows. All calculations are performed for each MCMC iteration using hold-out

data only.

1. Calculate τ̂ij for each holdout observation.

2. Construct two policies:

• Model-based policy: target users with a positive value of τ̂ij.

• Random policy: target the same number of users as under the model-based

policy, but selected uniformly at random from the eligible set.

3. For each policy compute the expected recharge amount over the subsequent 30 days

using realized outcomes and an inverse probability weighting (IPW) estimator.11

This design yields a sample of the posterior distribution of expected outcomes and

policy gains. It evaluates whether the model’s estimates of heterogeneous treatment ef-

fects translate into systematically better outcomes than random targeting. Because the

evaluation is conducted on hold-out data, it isolates predictive signal from estimation

noise. Importantly, the exercise does not alter the firm’s qualification rules: all policies

are evaluated within the originally eligible customer sets, mirroring the operational deci-

sion of whom to target conditional on eligibility.

Overall targeting value Table 3 reports posterior summary statistics of expected out-

comes and the proportion of customers targeted under each policy, alongside the revenue

observed under the firm’s current policy (average recharge over the subsequent 30 days).

The model-based policy yields higher expected revenue than both the firm’s policy and

the random benchmark, with posterior mass strictly above both alternatives. On average

11We note that our policy evaluation for both policies fully respects the firm’s qualification rules: we only
consider customers who satisfy the company-defined eligibility criteria when computing the IPW estimator
for each campaign.

36



across all eligible observations, the model-based policy increases revenue by approxi-

mately 1.1% (including both targeted and non-targeted users) while reducing the share of

customers targeted from about 80% to 50%.

Table 3: Policy evaluation results
Posterior means (and 95% posterior intervals) for the IPW estimator for revenue per customer and average
proportion of customers targeted across policy approaches.

Policy Revenue Increase (%) % Targeted
Posterior Mean (2.50% – 97.50%) over Company Policy average across interventions

Company 91.60 – – – 79.51%
Random 91.77 91.76 91.77 0.19% 49.49%
Proposed 92.61 92.24 92.97 1.10% 49.49%

From a managerial perspective, two implications follow. First, the model-based pol-

icy delivers a proportional revenue increase. Although a 1.1% average gain may appear

modest in percentage terms, it corresponds to roughly $1 per customer per intervention

and accumulates meaningfully given the firm’s scale and repeated campaign activity. Sec-

ond, the model-based policy targets substantially fewer customers than the firm’s exist-

ing policy. This pattern suggests that the firm’s baseline approach over-targets customers

who are unlikely to benefit from intervention.

Importantly, the gains from the model-based policy arise not only from contacting

fewer customers, but from identifying which customers to exclude from targeting. This

distinction is underscored by the comparison with the random policy, which targets the

same number of customers as the model-based policy but yields lower expected revenue.

Moreover, reducing the share of customers targeted (from 80% to 50%) has additional

benefits beyond short-run revenue. As reflected in our analysis of dynamic effects related

to prior exposure (Section 5.3), targeting fewer customers mitigates intervention fatigue

and, more broadly, reduces the risk of conditioning customers to expect frequent promo-

tional outreach.

While the average gain from targeting is 1.1%, we find substantial differences in terms

of the value of targeting across campaign types. To this end, we summarize policy per-
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formance by campaign Goal, Action, Reward, and by the observed treatment propensity

in the original randomized experiments. Full results are reported in Web Appendix C.2

(Table App-3).

Several patterns are noteworthy. First, gains are larger for behaviorally oriented cam-

paigns. The model-based policy improves revenue by 2.5% for cross-sell/adoption cam-

paigns and by 3.9% for wake-up campaigns, while it yields essentially no improvement

for development campaigns, which are likely aimed at a longer time horizon. Second,

gains are weaker for campaigns offering monetary credits or bonuses. Indeed, because

we do not observe incentive amounts or associated costs, this information cannot be in-

corporated into the policy evaluation, limiting our ability to distinguish profitable from

unprofitable targeting in these settings. Third, the observed treatment propensity in the

original A/B test is a meaningful predictor of the gains achievable through targeting. A

more balanced share of treatment and control is associated with higher value of targeting,

reaching up to 10.8% improvement relative to the firm’s policy. This pattern is intuitive:

when users are treated most of the time, as the firm frequently did, limited exposure to

control conditions constrains the model’s ability to learn individual-level responsiveness

to the campaign. While this mechanism is statistical in nature, it has important manage-

rial implications. In the the explore-exploit experimental framework, firms that overly ex-

ploit (targeting most of their customers), may lose the ability to learn valuable treatment-

effect heterogeneity for targeting. Instead, firms should preserve sufficient variation in

treatment assignment, ensuring that both treated and control observations remain infor-

mative.

Discussion. It is important to clarify the scope of this “counterfactual” exercise. Be-

cause our evaluation respects the firm’s original eligibility rules, we cannot assess how

outcomes would change if eligibility criteria themselves were altered. Moreover, the pol-

icy evaluation is static and does not account for the dynamic effects of improved target-
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ing on future consumption or promotion exposure, which we document in Section 5.3.

Since the proposed policy targets substantially fewer customers each week, these esti-

mates should therefore be interpreted as a conservative measure of the value of leverag-

ing treatment-effect heterogeneity within the existing operational framework.

Taken together, our results indicate that the proposed targeting policy improves per-

formance on average while delivering substantially larger gains in specific settings, par-

ticularly for non-monetary, behaviorally oriented campaigns and in experiments with

sufficient randomization balance. In the next section, we quantify the contribution of

customer, campaign, and contextual factors to improvements in targeting outcomes.

7. Decomposing Treatment Effect Heterogeneity of Mar-

keting Interventions

Another central objective of this study is to disentangle the sources of heterogeneity in

treatment effects. Having documented substantial variation, we now implement a de-

composition that attributes this heterogeneity to customer, campaign-design, and con-

textual factors. We conduct two complementary analyses. First, we perform a variance

decomposition to quantify the share of total variation in the estimated treatment effects

τij attributable to customer-, campaign-, and time-related components. Second, we as-

sess managerial relevance by decomposing the overall targeting value of heterogeneity,

as measured in the policy evaluation of Section 6, into the contributions of each com-

ponent using Shapley values (Shapley 1953). Together, these analyses distinguish where

heterogeneity resides from where it contributes to actionable targeting improvements.
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7.1. Decomposing through Treatment Effect Variation in τij

To quantify the relative importance of the sources of variation in Equation 2, we use

the Bayesian hierarchical ANOVA framework of Gelman (2005) and Gelman and Hill

(2006). For each component f (unobserved heterogeneity, observed heterogeneity, time,

and campaign characteristics) we compute the finite-population standard deviation s f of

the corresponding term, where larger s f indicates a larger contribution to dispersion in

τij. Intuitively, because the treatment effect τij is an additive function of these compo-

nents, a larger finite-population standard deviation s f implies that component f gener-

ates greater dispersion in τij across observations and therefore accounts for a larger share

of treatment-effect heterogeneity. Following Gelman and Hill (2006) (pp. 460–462), we

compute s f for (1) unobserved customer heterogeneity uI
i , (2) observed heterogeneity and

dynamics γIVij, (3) time effects τt(j), and (4) campaign effects τc(j) in each MCMC draw by

evaluating each component on the hold-out sample. To place components on a common

scale, we then normalize contributions as

sN
f =

s f

∑ f s f
.

Technical details, including the treatment of random effects (uI
i ) versus fixed effects (all

other components), are provided in Appendix B.1.

Table 4: Variance Decomposition.
Posterior means of estimated s f ’s, and sN

f and their 95% posterior intervals on percentage scale

Posterior Interval
Component s f sN

f (2.50% - 97.50%)

Unobserved (uI
i ) 5.77 60.8% 60.0% 61.4%

Observed (γIVij) 2.84 29.9% 29.3% 30.3%
Time (week) (τt(j)) 0.35 3.7% 3.2% 4.1%
Campaign (τc(j)) 0.54 5.7% 5.1% 6.3%

Table 4 summarizes the posterior results. Customer-related components account for

the vast majority of the variation in τij: unobserved heterogeneity (uI
i ) accounts for 60.8%
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and observed usage and dynamics (γIVij) for 29.9%. Campaign and week components

account for comparatively little variation (5.7% and 3.7%, respectively). Overall, disper-

sion in treatment effects is primarily driven by differences across customers, consistent

with prior evidence on the value of modeling individual-level heterogeneity (e.g., Rossi,

McCulloch, and Allenby 1996).

Discussion. While informative, this variance decomposition has limitations. First, pos-

terior uncertainty in individual-level effects (Figure 11) may mechanically increase the

dispersion attributed to uI
i . Second, the approach considers one term at-a-time while

these terms may capture overlapping variation; for example, campaign effects may partly

reflect eligibility rules that depend on past consumption. Third, the decomposition is sta-

tistical: it allocates dispersion across components but does not directly quantify contri-

butions to outcome-relevant objectives such as incremental revenue or targeting perfor-

mance.

7.2. Decomposing through Targeting Performance

To address the previous limitations, we conduct a complementary analysis using Shapley

values. This approach allocates credit for model performance across potentially inter-

acting sources of variation in outcome-relevant terms, thereby indicating not only where

heterogeneity resides, but also where it is most actionable for targeting. Specifically, Shap-

ley values address this attribution problem by defining each component’s contribution as

its average marginal improvement to a performance metric, taken over all possible sets in

which components could be added to the model. Intuitively, the Shapley value asks: if we

start from a baseline model and then sequentially add user-, campaign-, and week-level

information in every possible combination, how much does each component increase tar-

geting performance? This construction yields a fair allocation of the overall payoff across

components while accounting for their joint presence in the model.
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In our setting, we operationalize the payoff in two ways: (i) the expected policy gain

from targeting users with τ̂ij > 0 (IPW; Section 6) and (ii) the model’s ranking perfor-

mance (AUTOC; Section 4.4). We compute Shapley values for each payoff metric and

attribute contributions to the user, campaign, and week components (details in Web Ap-

pendix B.2).

Because observed and unobserved heterogeneity are subcomponents of the user di-

mension, we report two complementary decompositions. First, we present the Shapley

allocation across the three top-level components (user, campaign, and week). Second, we

report a separate, within-user Shapley decomposition that allocates the user component

between observed and unobserved heterogeneity. These within-user Shapley values are

computed in a restricted game that conditions on the user dimension and therefore sum

to 100%, not to the total-model Shapley shares.

Table 5: Shapley Values (as percentages) of Targeting Value metrics IPW and AUTOC.
Posterior means and 95% credible intervals of the Shapley value of each component.

IPW AUTOC
Component Shapley Value 95% interval Shapley Value 95% interval
User (total) 88.8% (78.3%, 99.1%) 88.8% (78.3%, 94.7%)
Observed (conditional) 6.1% (−14.9%, 19.2%) 12.6% (2.4%, 21.4%)
Unobserved (conditional) 93.9% (80.8%, 114.9%) 87.4% (78.7%, 97.5%)

Campaign 9.0% (2.3%, 16.1%) 9.1% (4.4%, 18.2%)
Week 2.2% (−4.2%, 8.9%) 2.0% (−1.3%, 5.3%)

Two insights emerge. First, the Shapley allocations are similar across the two payoff

metrics (IPW and AUTOC): in both cases, the user component accounts for the majority of

targeting value, whereas campaign and week components contribute comparatively less.

This indicates that customer-level differences are the primary driver of out-of-sample tar-

geting gains. Second, within the user dimension, most of the targeting value is attributed

to unobserved responsiveness captured by uI
i . Combining the user share and the within-

user unobserved share implies that approximately 83.4% (= 0.888× 0.939) of expected

policy gains (IPW) are attributable to unobserved heterogeneity.
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Overall, the Shapley decomposition is consistent with the variance decomposition in

Table 4, while extending the analysis in two ways. First, by evaluating contributions in

terms of targeting performance on hold-out data rather than posterior variance compo-

nents, the Shapley decomposition directly considers economically relevant payoffs, with

estimation noise entering only as attenuation. Second, the Shapley decomposition at-

tributes value based on each component’s marginal contribution when combined with

the others, thereby capturing how campaign-, user- and week-level components operate

jointly in generating targeting gains. The Shapley decomposition provides an outcome-

focused summary of the sources of targeting performance improvements, highlighting

the role of learning across campaigns in the presence of unobserved heterogeneity that

cannot be recovered when campaigns are analyzed in isolation.

8. Conclusion and Discussion

Most experimental causal inference research to date has analyzed one experiment at a

time. While this approach leads to valid incrementality estimates it does not leverage the

insights and actions that can be gained from combining information across experiments.

Specifically, this research leverages the information across experiments to investigate the

sources of heterogeneity in the effectiveness of marketing interventions by developing

and applying a hierarchical Bayesian framework that decomposes variation in treatment

effects into three components: individual responsiveness, campaign design, and contex-

tual timing. By isolating the contribution of each source, our approach moves beyond

describing treatment effect heterogeneity to explaining its structure and linking that struc-

ture directly to targeting decisions and policy value.

We apply this framework to a large-scale empirical setting in the telecommunications

industry, leveraging data from hundreds of randomized interventions delivered to over a

half a million customers over a 2-year period. Our analysis reveals substantial individual-
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level heterogeneity in responsiveness, much of which remains unobserved even after

controlling for past consumption and prior exposure to marketing interventions. Im-

portantly, we find it to be the biggest driver of variation in targeting effectiveness, that

can only be inferred from analyzing repeated observations, which is an integral part of

the Bayesian model we propose.

In addition, we find strong evidence of diminishing responsiveness: repeated expo-

sure to marketing interventions reduces customer sensitivity, with only modest recovery

over time. This pattern is consistent with intervention fatigue, whereby successive expo-

sures yield diminishing returns. The evidence of diminishing responsiveness highlights

a fundamental trade-off: while frequent interventions may yield short-term gains, they

can also erode long-term engagement. Responsiveness should therefore be treated as a

history-dependent quantity that varies with customers’ prior exposure to marketing in-

terventions, rather than as a fixed attribute. Marketers must accordingly pace and manage

interventions deliberately.

Together, these findings highlight significant opportunities to improve marketing ef-

fectiveness by aligning targeting strategies with the evolving responsiveness of individ-

ual customers.

The broader implications of our findings are both operational and strategic. Opera-

tionally, the decomposition framework clarifies which customers and moments are most

valuable for personalization. Strategically, it provides guidance on where firms should in-

vest analytic and experimentation resources, i.e., customer, campaign design, or timing,

based on their contribution to response heterogeneity.

Our results point to the potential of repeated experimentation, when carefully de-

signed and combined across campaigns, as a substitute for more intrusive forms of cus-

tomer data. While implementing our framework requires observing outcomes across

multiple experiments, the role of this data is fundamentally different from that in tra-

ditional data-driven personalization approaches. Rather than continually accumulating
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granular customer features or maintaining rich behavioral histories, repeated experimen-

tation enables the inference of stable, low-dimensional latent traits that summarize un-

observed responsiveness. Once these traits are estimated, firms can substantially reduce

their reliance on persistent identifiers, raw behavioral logs, or external data sources, and

in principle retain only aggregated or transformed representations. In privacy-constrained

environments, structured experimentation therefore offers a pathway to personalization

that emphasizes data minimization and transformation, preserving targeting power while

limiting long-term dependence on detailed individual-level data.

Despite the model’s flexibility and scalability, several limitations merit consideration.

First, estimates of individual heterogeneity are subject to posterior dispersion, particu-

larly for users with limited exposure histories. Future work may benefit from exploring

structured priors or regularization methods (Bhadra et al. 2019) to stabilize these esti-

mates, although such choices may introduce trade-offs with scalability. Second, we eval-

uate policies with inverse probability weighting (IPW). While unbiased, IPW can become

highly variable when propensities are extreme (Robins, Rotnitzky, and Zhao 1994; Kang

and Schafer 2007). In our application, this limitation is mitigated by complementing IPW

with rank-weighted estimands (Yadlowsky et al. 2025) such as the Treatment-Optimality

Curve (TOC) and its area (AUTOC), which evaluate the same policy performance more

robustly and with lower variance. More generally, overlap/balancing and doubly ro-

bust estimators can stabilize policy-value estimation (Li, Morgan, and Zaslavsky 2018;

Tan 2010; Bang and Robins 2005). Third, our current specification leverages behavioral

data but does not incorporate richer customer-level information, such as attitudinal met-

rics, or other potentially relevant behaviors like interaction with customer service or the

use of auxiliary services. Including such data, where available, may enhance the inter-

pretability and accuracy of model predictions. Fourth, while our framework accounts for

campaign-level heterogeneity using fixed effects, it does not explicitly model how specific

campaign attributes, such as goal or reward type, contribute to differences in effective-
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ness. Future research could extend the framework to include campaign-level covariates

(similar to Huang, Ascarza, and Israeli 2024), thereby supporting inference and gener-

alization across campaign designs. Finally, our analysis is limited to a single empirical

setting in the telecommunications industry. While we expect that customer heterogeneity

will also be a key driver of variation in other contexts, this remains an open question.

Future research should investigate how these dynamics play out in alternative domains

such as e-commerce, subscription services, or digital media.

In sum, our study highlights how repeated experimentation can be leveraged to better

understand variation in marketing effectiveness. By showing not only where heterogene-

ity resides but also where it is actionable, we hope this work encourages firms to leverage

repeated experimentation to uncover latent differences that improve targeting, and moti-

vates future research that extends this framework across domains and decision settings.

References

Ascarza, Eva (2018), “Retention futility: Targeting High-risk Customers Might be Ineffec-
tive,” Journal of Marketing Research, 55 (1), 80–98.

Ataman, M Berk, Harald J van Heerde, and Carl F Mela (2010), “The Long-term Effect of
Marketing Strategy on Brand Sales,” Journal of Marketing Research, 47 (5), 866–882.

Athey, Susan, Niall Keleher, and Jann Spiess (2025), “Machine Learning Who to Nudge:
Causal vs Predictive Targeting in a Field Experiment on Student Financial Aid Re-
newal,” Journal of Econometrics, 249, 105945.

Athey, Susan, Stefan Wager, and Vasilis Syrgkanis (2021), “Policy Learning with Obser-
vational Data,” Econometrica, 89 (1), 133–161.

Bang, Heejung and James M Robins (2005), “Doubly Robust Estimation in Missing Data
and Causal Inference Models,” Biometrics, 61 (4), 962–973.

Bell, David R, Jeongwen Chiang, and Venkata Padmanabhan (1999), “The Decomposition
of Promotional Response: An Empirical Generalization,” Marketing Science, 18 (4), 504–
526.

Bhadra, Anindya, Jyotishka Datta, Nicholas G. Polson, and Brandon Willard (2019),
“Lasso Meets Horseshoe: A Survey,” Statistical Science, 34 (3), pp. 405–427.

46



Bijmolt, Tammo HA, Harald J van Heerde, and Rik GM Pieters (2005), “New Empirical
Generalizations on the Determinants of Price Elasticity,” Journal of Marketing Research,
42 (2), 141–156.

Blondel, Vincent D, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre
(2008), “Fast Unfolding of Communities in Large Networks,” Journal of Statistical Me-
chanics: Theory and Experiment, 2008 (10), P10008.

Chan, Tat, Chakravarthi Narasimhan, and Qin Zhang (2008), “Decomposing Promotional
Effects with A Dynamic Dtructural Model of Flexible Consumption,” Journal of Market-
ing Research, 45 (4), 487–498.

Chernozhukov, Victor, Mert Demirer, Esther Duflo, and Iván Fernández-Val (2025),
“Fisher–Schultz Lecture: Generic Machine Learning Inference on Heterogeneous Treat-
ment Effects in Randomized Experiments, With an Application to Immunization in In-
dia,” Econometrica, 93 (4), 1121–1164.

Crook, Thomas, Brian Frasca, Ron Kohavi, and Roger Longbotham “Seven pitfalls to
avoid when running controlled experiments on the web,” “Proceedings of the 15th
ACM SIGKDD international conference on Knowledge discovery and data mining,”
pages 1105–1114 (2009).

Dell’Acqua, Fabio, Maxime Cohen, and Yichuan Zhou (2021), “Personalization through
Experimentation: Evidence from Targeted Promotions in a Two-Sided Market,” Man-
agement Science.

Ellickson, Paul B, Wreetabrata Kar, and James C Reeder III (2023), “Estimating Market-
ing Component Effects: Double Machine Learning from Targeted Digital Promotions,”
Marketing Science, 42 (4), 704–728.

Ellickson, Paul B, Wreetabrata Kar, James C Reeder III, and Guang Zeng (2025), “Us-
ing Contextual Embeddings to Predict the Effectiveness of Novel Heterogeneous Treat-
ments,” Available at SSRN 4845956.

Gelman, Andrew (2005), “Analysis of Variance: Why It Is More Important than Ever,”
The Annals of Statistics, 33 (1), 1–31.

Gelman, Andrew and Jennifer Hill (2006), Data Analysis Using Regression and Multi-
level/Hierarchical Models Analytical Methods for Social Research, Cambridge University
Press.

Gordon, Brett R, Florian Zettelmeyer, Neha Bhargava, and Dan Chapsky (2019), “A Com-
parison of Approaches to Advertising Measurement: Evidence from Big Field Experi-
ments at Facebook,” Marketing Science, 38 (2), 193–225.

Gupta, Sunil (1988), “Impact of Sales Promotions on When, What, and How Much to
Buy,” Journal of Marketing Research, 25 (4), 342–355.

47



Hitsch, Günter J, Sanjog Misra, and Walter W Zhang (2024), “Heterogeneous Treatment
Effects and Optimal Targeting Policy Evaluation,” Quantitative Marketing and Economics,
22 (2), 115–168.

Huang, Ta-Wei and Eva Ascarza (2024), “Doing More with Less: Overcoming Ineffective
Long-term Targeting Using Short-term Signals,” Marketing Science, 43 (4), 863–884.

Huang, Ta-Wei, Eva Ascarza, and Ayelet Israeli (2024), Incrementality Representation
Learning: Synergizing Past Experiments for Intervention Personalization Harvard Business
School.

Ibragimov, Marat, Artem Timoshenko, Duncan Simester, Jonathan A. Parker, and Schoar
Antoinette (2025), “Improving Targeting Policies Using Transfer Learning,” Available
at SSRN 5146292.

Imai, Kosuke and Michael Lingzhi Li (2021), “Experimental Evaluation of Individualized
Treatment Rules,” Journal of the American Statistical Association, pages 1–15.

Kang, Joseph D. Y. and Joseph L. Schafer (2007), “Demystifying Double Robustness: A
Comparison of Alternative Strategies for Estimating a Population Mean from Incom-
plete Data,” Statistical Science, 22 (4), 523–539.

Kohavi, Ron and Roger Longbotham “Online Controlled Experiments and A/B Tests,”
“Encyclopedia of Machine Learning and Data Science,” pages 1–13, Springer (2023).

Kopalle, Praveen K, Carl F Mela, and Lawrence Marsh (1999), “The Dynamic Effect of
Discounting on Sales: Empirical Analysis and Normative Pricing Implications,” Mar-
keting Science, 18 (3), 317–332.

Krefeld-Schwalb, Antonia, Eli Rosen Sugerman, and Eric J Johnson (2024), “Exposing
Omitted Moderators: Explaining Why Effect Sizes Differ in the Social Sciences,” Pro-
ceedings of the National Academy of Sciences, 121 (12), e2306281121.

Li, Fan, Kari Lock Morgan, and Alan M Zaslavsky (2018), “Balancing Covariates via
Propensity Score Weighting,” Journal of the American Statistical Association, 113 (521),
390–400.

Lodish, Leonard M, Magid Abraham, Stuart Kalmenson, Jeanne Livelsberger, Beth Lu-
betkin, Bruce Richardson, and Mary Ellen Stevens (1995), “How TV Advertising Works:
A Meta-analysis of 389 Real-world Split Cable TV Advertising Experiments,” Journal of
Marketing Research, 32 (2), 125–139.

Mela, Carl F, Sunil Gupta, and Donald R Lehmann (1997), “The Long-term Impact of
Promotion and Advertising on Consumer Brand Choice,” Journal of Marketing research,
34 (2), 248–261.

Mela, Carl F, Kamel Jedidi, and Douglas Bowman (1998), “The Long-term Impact of
Promotions on Consumer Stockpiling Behavior,” Journal of Marketing Research, 35 (2),
250–262.

48



Pons, Pascal and Matthieu Latapy “Computing Communities in Large Networks Using
Random Walks,” “Computer and Information Sciences-ISCIS 2005: 20th International
Symposium, Istanbul, Turkey, October 26-28, 2005. Proceedings 20,” pages 284–293,
Springer (2005).
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Web Appendix

Learning from Many Experiments: A Hierarchical Bayesian
Framework for Decomposing Marketing Treatment

Heterogeneity

A. Model Specification and Estimation

This appendix provides the complete specification of the variables included in the hierar-

chical Bayesian model described in Section 4.1 as well as the details about the estimation

procedure.

A.1. Full Set of Variables

Table App-1 describes the data used in the estimation, indicating the model component

to which they belong (Section 4.1), along with their definition and operationalization.

A.2. Estimation implementation

This section provides additional details about the proposed hierarchical Bayesian model

and outlines the Gibbs sampling procedure used to sample the joint posterior distribu-

tion of the parameters. Specifically, we expand upon the model formulation presented

in the main text by describing the full set of closed-form conditional distributions for the

Markov chain Monte Carlo (MCMC) algorithm. The Gibbs sampler leverages the condi-

tional conjugacy of model components to facilitate efficient computation. Together, these

procedures enable scalable inference across the large number of customers and repeated

experiments in our data. Convergence diagnostics and robustness checks are reported in

Web Appendix A.2.3.

A.2.1. Model details and Gibbs sampling

For ease of reference, we include the model equations from the main document (Sec-

tion 4.1). Notation. To mirror the estimation implementation, we write inner products
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Table App-1: Variables included in the model specification.

Variable Details

yij Outcome Recharge in next 30 days − recharge in prior 30 days

Xij Usage past 7 days Log transformation of usage (in minutes)
Usage past 7–14 days Log transformation of usage (in minutes)
Usage past 14–30 days Log transformation of usage (in minutes)
Rolling past usage Log transformation of the rolling average of minutes used

in past 30 days

Zij A constant term Column of ones
Campaign fixed effects Categorical indicators
Week fixed effects Categorical indicators
All elements of Vij

Vij Recency × Treatment
stock

Recency is discretized in six bins:
(0, 2], (2, 4], (4, 6], (6, 8], (8+), “never treated”
Treatment stock is decayed at 0.75 per week; then dis-
cretized into quintiles
Model includes 25 combinations and “never treated” as
separate dummy variables

Activity level Seven categories based on past-30-day usage quantiles
Proportion targeted Share of customers targeted in campaign j

explicitly using transpose notation in this appendix; in the main manuscript we adopt a

lighter notation for readability where appropriate. The model is specified as

yij = τijWij + β>i Xij + γ>Zij + εij, (App-1)

τij = τ̄ + τt(j) + τc(j) + τ I
ij, (App-2)

τ I
ij = (γI)>Vij + uI

i , (App-3)

where yij is the outcome for customer i in campaign j, Wij indicates the treatment assign-

ment, Xij is a k1 × 1 vector containing pre-treatment behavioral covariates, Zij is a k2 × 1

vector containing proxies for past campaign activity together with campaign and week

fixed effects, and Vij is a k3 × 1 vector with proxies for past campaign activity. Further-

more, εij ∼ N (0, σ2), uI
i ∼ N (0, σ2

I ), and βi = β̄ + uβ
i , with uβ

i ∼ Nk1(0, Σβ). In terms of

sample size, we have i = 1, 2, ..., n customers. The number of campaigns for customer i is

Ji. The total sample size is N = ∑i Ji.
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In our estimation, we allow for a non-zero covariance between the (upper-level) er-

ror terms uI
i and uβ

i . Furthermore, we include an overall intercept in the model (in-

cluded in Zij). In addition, following Dong and Wedel (2017), all intercepts belonging

to a model component sum-to-zero for identification. For instance, the weekly treatment

effects {τt}T
t=1 in (App-2) satisfy the constraint ∑T

t=1 τt = 0. Similarly, the parameters in

γ in (App-1) corresponding to the week fixed effects sum-to-zero, etc. Furthermore, we

mean center the dependent variable and all quantitative covariates before estimation.

We keep the model tractable for large samples by specifying conjugate priors for the

parameters, such that our model is fully Gibbs. Specifically, we take normal distributions

for regression (intercept, slope) parameters and inverse-gamma/Wishart distributions for

variance–covariance parameters. We assume no prior knowledge in setting the prior pa-

rameter values.

To develop the Gibbs sampler, we rewrite the model as an ‘interaction’ model. Specif-

ically, we substitute equation (App-3) in (App-2), and the resulting equation with βi =

β̄ + uβ
i in (App-1), i.e.,

yij = (τ̄ + τt(j) + τc(j) + (γI)>Vij + uI
i )Wij + (β̄ + uβ

i )
>Xij + γ>Zij + εij

= (uI
i , (uβ

i )
>)(Wij, X>ij )

>

+ (γ>, (β̄)>, τ̄, (τT)>, (τC)>, (γI)>)

× ((Zij)
>, (Xij)

>, Wij, (WijDT
ij)
>, (WijDC

ij)
>, (WijVij)

>)> + εij, (App-4)

where DT
ij is a design vector based on effect coding, picking the t(j)’th element from

τT, with τT denoting a (T − 1)× 1 vector of weekly treatment effect intercepts τt, with

τT = −∑ τt. More specifically, for an observation (i, j) that falls in week t(j) ∈ {1, . . . , T},

the effect-coded design vector DT
ij ∈ RT−1 is given by

DT
ij =


e t(j) if t(j) ∈ {1, . . . , T − 1},

−ιT−1 if t(j) = T,
so that (τT)>DT

ij = τt(j).

Here, es denotes the s-th standard basis vector in RT−1 and ιT−1 is the (T − 1)× 1 vector

of ones. DC
ij and τC are defined similarly.
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To be consistent, Wij is also effect-coded for estimation (i.e., Wij ∈ {−1, 1}, where

Wij = 1 if observation (i, j) is in the treatment group and Wij = −1 if it is in the control

group, see also Dong and Wedel 2017).

We rewrite (App-4) in the following compact form:

yij = u>i Rij︸ ︷︷ ︸
random (unit-specific) part

+ θ>Fij︸ ︷︷ ︸
fixed part

+ εij, (App-5)

where

ui =

uI
i

uβ
i

 , Rij =

Wij

Xij

 , (App-6)

θ =



γ

β̄

τ̄

τT

τC

γI


, Fij =



Zij

Xij

Wij

Wij DT
ij

Wij DC
ij

Wij Vij


. (App-7)

We define the stacked dependent variable as

y = (y11, y12, . . . , y1J1 , y21, y22, . . . , y2J2 , . . . , yn1, yn2, . . . , ynJn)
>.

We stack the random-effects from (App-6) as

u = (u>1 , u>2 , . . . , u>n )
>.
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Furthermore, we define the following two sparse design matrices:

F =



F>11

F>12
...

F>1J1

F>21

F>22
...

F>2J2
...

F>n1

F>n2
...

F>nJn



, R =



R>11

R>12
...

R>1J1

R>21

R>22
...

R>2J2
. . .

R>n1

R>n2
...

R>nJn



, (App-8)

where the block–diagonal matrix R stacks the transposed vectors Rij in (App-6) and the

matrix F stacks the transposed vectors Fij in (App-7). Finally, let ỹfix = F θ and ỹrand =

R u.

Full conditional distribution for θ. The full conditional distribution for θ is a Kθ-variate

normal distribution:

θ
∣∣ rest ∼ NKθ

(
µ̃θ, Σ̃θ

)
,

with

Σ̃θ =
(

V−1
θ0 + σ−2 F>F

)−1
, µ̃θ = Σ̃θ

(
V−1

θ0 µθ0 + σ−2 F>
(
y− ỹrand

))
,

and Kθ = (k1 + k2 + k3 + T + C). We set the prior mean µθ0 to zero and the prior variance

as Vθ0 = 1000× IKθ
.

Full conditional distribution for 1/σ2. The full conditional distribution for the error

precision σ−2 is a gamma distribution:

σ−2 ∣∣ rest ∼ G
(

a0 +
N
2 ,

[
1
b0
+ 1

2 (y− ỹrand − ỹfix)
>(y− ỹrand − ỹfix)

]−1
)

,
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where we set the prior shape a0 equal to 0.1 and the prior scale b0 equal to 10.

Full conditional distribution for Ω−1
u . The random effects ui defined in (App-6) follow a

(k1 + 1)-variate normal distribution centered at zero with variance-covariance matrix Ωu.

As mentioned earlier, we allow for a non-zero covariance between uI
i and uβ

i , so we have

Ωu =

 σ2
I σIβ

σβI Σβ

 ,

where σIβ = σβI
> are the covariances between uI

i and uβ
i . We take the Wishart prior

Ω−1
u ∼ W(a0, B0) with a0 = k1 + 3 and B0 = Ik1+1. Let Su = ∑n

i=1 uiu>i , then

Ω−1
u
∣∣ rest ∼ W(a0 + n, Bn) , Bn =

(
B−1

0 + Su

)−1
.

We use the scale-matrix parameterization of the Wishart distribution in the above nota-

tion.

Full conditional distribution for ui. Let yi and ỹfix,i be the Ji rows in y and ỹfix cor-

responding to customer i = 1, 2, ..., n. Furthermore, Ri stacks R>ij over j for i. The full

conditional distribution is

ui
∣∣ rest ∼ Nk1+1

(
µ̃ui

, Σ̃ui

)
,

with

Σ̃ui =
(

Ω−1
u + σ−2 R>i Ri

)−1
, µ̃ui

= Σ̃ui

(
σ−2 R>i (yi − ỹfix,i)

)
.

A.2.2. Implementation

The model is implemented in R (R Core Team 2025) using c++ through the R package Rcpp

(Eddelbuettel and François 2011), and leverages multithreading to parallelize updates of

user-specific parameters. This parallelization is essential given the scale of the data.

More specifically, the Gibbs sampler for the results in the main document was run

on an Amazon EC2 instance (c7i.2xlarge) with 8 vCPUs and 16GiB of memory (Ama-

zon Web Services, Inc. n.d.). The total run time of our MCMC algorithm to sample the
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posterior distribution of the model parameters in the main document lasts about 8 hours,

which we find acceptable given the size of the data.

We update the ui’s in parallel as our n is large. We use four parallel workers, which

balance efficiency and overhead. We follow Stubner (2024) to manage the random number

generators across the parallel chains.

Furthermore, we implemented several pre-processing steps before running the Gibbs

sampler. For instance, the matrix F is sparse (most elements are zero) which through the

R package RcppEigen (Bates and Eddelbuettel 2013) can be stored efficiently in memory

by using a specialized representation storing only the nonzero coefficients. In addition,

we pre-computed matrices such as F>F and R>i Ri, and transposed large matrices F and

Ri once before iterating through the Gibbs sampler.

We relied on the following core software and packages:

• Ubuntu 24.04.1

• GNU C++ 17 (g++ 13.2.0) and OpenMP 4.5

• R 4.4.2 (R Core Team 2024)

• Rcpp 1.0.13.1 (Eddelbuettel and François 2011)

• RcppArmadillo 14.2.0.1 (Eddelbuettel and Sanderson 2014)

• RcppEigen 0.3.4.0.2 (Bates and Eddelbuettel 2013)

• dqrng 0.4.1 (Stubner 2024)

• BH 1.84.0.0 (Eddelbuettel, Emerson, and Kane 2024)

• data.table 1.16.2 (Barrett et al. 2024)

A.2.3. MCMC convergence

We ran the sampler for 25,000 iterations, discarding the first 10,000 as burn-in. From the

remaining iterations we retained 1,000 draws (every 15th) for posterior summaries. Fig-

ure App-1 shows the traceplot of the log-likelihood kernel of the main equation (Equa-
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Figure App-1: MCMC traceplot log likelihood kernel
ESS=1000; AR(1)=0.02, AR(5)=0.04, AR(10)=-0.03.

tion 1). Autocorrelation among the retained draws is negligible (e.g., the lag-1 autocor-

relation is 0.02), and the effective sample size is equal to the actual number of saved

draws. Together, these diagnostics suggest good mixing and support the adequacy of the

retained sample for posterior inference. Thinning was applied only to limit storage and

post-processing overhead.

A.3. Exchangeability and overlap across interventions

Our hierarchical model pools information across interventions by assuming that, condi-

tional on observed pre-treatment information, customers’ remaining responsiveness pa-

rameters are drawn from a common distribution. It does not require that all customers

be identical, but rather that, after conditioning on the information used to define eligi-

bility and observed customer state, the uI
i ’s are independent and identically distributed

(Lindgren 1993; Gelman et al. 2000). This is a conditional exchangeability assumption.

Formally, the individual responsiveness component uI
i enters the treatment-effect

equation as

τij = τ̄ + τt(j) + τc(j) + (γI)>Vij + uI
i , uI

i ∼ N (0, σ2
I ).
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Interpreted generatively, the prior uI
i ∼ N (0, σ2

I ) posits that the uI
i are i.i.d. draws from a

population distribution once we condition on the pre-treatment information that governs

who is randomized within each intervention-week.1 Importantly, these qualification rules

enter the model in two places: in the outcome equation through pre-treatment covariates

(capturing systematic behavioral differences across eligible groups) and in the treatment-

effect equation through campaign and time components, thereby ensuring that pooling is

conducted conditional on the segmentation structure that defines eligibility.

A practical concern is whether treatment-effect information learned in one set of cam-

paigns is transferable to others. In the main text (Section 4.2), we address this empirically

by documenting extensive overlap in customer participation across campaigns via the

campaign–user design network (Figures 4 and 5). This overlap supports pooling under

a common hierarchical prior by ensuring that campaigns are connected through shared

customers rather than forming isolated subpopulations with no empirical bridge. When

such overlap holds, posterior learning about the distribution of uI
i and other components

can propagate across interventions in a way that is grounded in observed cross-campaign

participation.

1This conditioning information includes the firm’s deterministic qualification rules (which are functions
of pre-treatment behavior), as well as week effects and the observed customer state Vij.
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B. Implementation Details for the Variance Decomposi-

tion

B.1. Gelman decomposition

We follow Gelman (2005) and Gelman and Hill (2006) to quantify the relative importance

of different sources of variation in τij. To quantify the sources of variation in ANOVA

models, they estimate the finite-population standard deviations for batches of coeffi-

cients. How to estimate the standard deviations depends on whether the coefficients

are ‘modeled’ (e.g., shrunk under an upper-level model) or ‘unmodeled’ (e.g., noninfor-

mative prior distributions). In order to quantify the relative importance of the sources

of variation in τij, i.e. campaign, week, observed and unobserved user-specific sources,

we estimate the finite-population standard deviations for the corresponding terms in τij

following Gelman (2005) and Gelman and Hill (2006):

• for unobserved user-specific variation, we estimate the finite-sample standard de-

viation of uI
i as su =

√
1

n−1 ∑n
i=1(u

I
i − ūI)2, with ūI the sample mean of uI

i , i =

1, 2, ..., n.

• for observed user-specific variation, we estimate the finite-sample standard devia-

tion of past-usage (and similarly for recency and stock) as sp =
√

∑7
j=1 λj(γ

I
p(j) − γ̄I

p)
2,

with λj the proportion of the sample in the j-th past-usage category (approximately

1/7 by design), p(j) the index corresponding to the j-the past-usage category coef-

ficient in γI , and γ̄I
p = ∑7

j=1 λjγ
I
p(j).

• for variation from campaign and week effects, we estimate the standard deviation

in the same way as for observed user-specific variation.2

The estimates for the finite-population standard deviations s f are computed on hold-

out sample observations and in each sweep of the MCMC chain. The reported values in

2The finite-population standard deviation of the proportion of customers who received the intervention
is estimated as the product of the standard deviation of the coin in the sample and the absolute value of the
corresponding coefficient in θ in Equation App-7.

App-10



Table 4 in the main document are posterior summaries. The relative importance, sN
f , are

computed by normalizing s f .

B.2. Shapley decomposition

Our approach to decompose treatment effect heterogeneity is adapted from Hué et al.

(2023). These authors introduce ‘eXplainable PERformance (XPER)’, a method to decom-

pose model performance metrics into feature-level contributions. XPER is built on Shap-

ley values (Shapley 1953). In game theory, Shapley values distribute payoffs among play-

ers. In XPER, performance metrics (e.g., Area Under the Curve (AUC), Mean-Squared

Error (MSE), R-squared, etc.) are decomposed across model features. Each XPER value

measures a feature’s marginal contribution to performance by evaluating performance

changes across different coalitions of features. XPER satisfies axioms associated with

Shapley values (e.g., efficiency, symmetry, linearity, and null effect properties). This ap-

proach is both model-agnostic and metric-agnostic. Importantly, the authors propose an

implementation approach that does not require re-estimating the models (with different

sets of features).

In our application, each hierarchical dimension, customer, campaign, and time (week)

heterogeneity, is treated as a “player” or “feature.” We consider two payoffs that are

relevant for policy evaluation: (a) the IPW of the policy τij > 0 (e.g., Section 6) and (b) the

AUTOC based on τij (e.g., section 4.4). For each feature f , the Shapley/XPER value ϕ f

measures the weighted average marginal contribution of feature f to the payoff measure

(e.g., AUTOC) over all features coalitions. The marginal contribution of f is the difference

between the expected value of the payoff (i) including f in and (ii) excluding f from the

coalition. We compute the relative contribution of f by normalizing ϕ f with respect to the

difference between the payoff value and the payoff of a random targeting policy (ϕ0). We

compute these values in the holdout sample and in each iteration of the MCMC chain.

Hence, the reported values in Table 5 in the main document summarize the posterior

distributions of the Shapley/XPER values.
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C. Further Results

C.1. Campaign Effectiveness by design characteristics

This appendix provides additional detail supporting the campaign-level results reported

in the main text. In Section 5.1, we document substantial heterogeneity in average treat-

ment effects across campaigns, summarized by the posterior distributions of campaign-

level effects τ̄·c (Figure 6). We further show that jointly estimating campaigns within

the hierarchical Bayesian framework yields substantially more precise estimates than

campaign-by-campaign analysis (Figure 7), and that only a limited subset of observable

campaign characteristics is systematically associated with effectiveness.

Appendix C.1 extends these findings by reporting the full posterior regression re-

sults linking campaign-specific effects τc(j) to observable design characteristics, namely

Goal, Action, and Reward. In addition, we provide complementary descriptive diagnos-

tics that illustrate how campaign-level effects are distributed across design categories.

Together, these results offer a more granular view of how campaign design features re-

late to intrinsic effectiveness, while reinforcing the conclusion from the main text that

most cross-campaign variation remains unexplained by observable design attributes and

instead reflects customer-level heterogeneity.

Figure App-2 presents posterior means and 95% credible intervals for campaign-level

average treatment effects estimated in isolation. These estimates are shown for descriptive

purposes only, to visualize the dispersion in effects across interventions without pooling

information across campaigns. As discussed in Section 5.1, isolated estimation produces

substantially noisier estimates relative to the joint hierarchical model, but the figure helps

illustrate the wide range of effects observed across campaign designs.
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Figure App-2: Campaign-level ATEs with 95% intervals (estimated in isolation)
Posterior means and 95% credible intervals of campaign-level ATEs, estimated in isolation for descriptive
comparison across interventions.

Table App-2 aggregates campaign-specific treatment effects by design characteris-

tics, reporting posterior medians and 95% posterior intervals from the joint hierarchical

Bayesian model. Consistent with the discussion in Section 5.1, campaigns with a Wakeup

objective exhibit systematically higher effectiveness on average, whereas campaigns in-

volving International actions or Promo-based rewards tend to perform worse. Impor-

tantly, however, the posterior intervals within each category remain wide, highlighting

substantial residual heterogeneity across campaigns even after conditioning on design

features.
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Table App-2: Posterior intervals of campaign effectiveness by design factors
Posterior medians and 95% posterior intervals of treatment effects across 140 interventions, grouped by design
factor.

Category Factor 2.5% Mean 97.5%

Overall –0.22 –0.08 0.06

Goal Cross sell –0.39 –0.17 0.06
Development –0.21 –0.06 0.09
Product adoption –0.34 0.01 0.36
Wakeup 0.05 0.22 0.39

Action Data -0.12 0.13 0.39
International –0.43 –0.26 –0.10
Nothing –0.16 0.02 0.19
Recharge –0.02 0.10 0.23

Reward Bonus –0.22 0.07 0.37
Credit –0.16 0.00 0.16
Data –0.08 0.06 0.19
International –0.03 0.11 0.24
Promo –0.55 –0.23 0.09

These results underscore that observable campaign characteristics explain only a por-

tion of the variation in campaign effectiveness. While certain design choices are associ-

ated with higher or lower average effects, a large share of cross-campaign heterogeneity

persists within design categories. This finding aligns with the main-text decomposition

results, which show that customer-level heterogeneity is the dominant source of variation

in treatment effects.

App-14



C.2. Targeting Performance by Campaign Characteristics

This appendix provides additional detail underlying the targeting results reported in the

main text. In Section 6, we evaluate the overall performance of the proposed model-

based targeting policy and show that, on average, it improves revenue while substantially

reducing the share of customers targeted. We further document that these gains vary

systematically across observable campaign characteristics. Appendix C.2 reports the full

set of results supporting these patterns.

Specifically, we summarize targeting performance by campaign Goal, Action, Reward,

and by the observed treatment propensity in the original randomized experiments. Ta-

ble App-3 reports posterior means of expected revenue per customer and targeting inten-

sity under the proposed model-based policy and the firm’s existing policy. Results are

aggregated by campaign characteristic using posterior draws from each MCMC iteration,

thereby fully propagating uncertainty from the estimation of heterogeneous treatment

effects to policy evaluation.

Several patterns emerge. For campaign Goal, the proposed policy yields improve-

ments of 2.5% for cross-sell/adoption campaigns and 3.9% for wake-up campaigns, while

delivering negligible gains for development campaigns. This pattern is consistent with

the informational nature of development campaigns, whose primary objective is not to

elicit an immediate behavioral response.

For Action, gains are concentrated in campaigns involving data usage and interna-

tional actions, whereas recharge-only and “no action” campaigns exhibit little improve-

ment. For Reward, the proposed policy underperforms the firm’s policy for credit/bonus

campaigns. Because monetary incentives may induce spending that would have occurred

regardless, and because incentive amounts are unobserved, the model cannot condition

targeting decisions on campaign cost-effectiveness in these settings.

Finally, treatment propensity plays a central role in determining targeting gains. When

treatment assignment is highly unbalanced (average propensity above approximately

80%), the proposed policy performs worse than the firm’s policy. In contrast, campaigns

with more balanced assignment exhibit substantially larger gains. This pattern reflects an
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Table App-3: Targeting performance by campaign characteristics
Proportional revenue gains from targeting based on model-predicted treatment effects relative to the company’s
existing policy. Results are reported by campaign characteristics, including Goal, Action, Reward, and treat-
ment propensity (i.e., the proportion of customers assigned to treatment in the original A/B test). Values in
the final column are shown in bold when the corresponding posterior interval excludes zero.

Campaign type # Camp. Revenue Revenue % Targeted % Targeted Increase
(Proposed) (Company) (Proposed) (Company) (%)

Goal
Cross-sell/Adoption 19 125.09 122.02 0.47 0.79 2.51
Development 86 115.42 115.37 0.49 0.80 0.04
Wake-up 35 22.78 21.92 0.53 0.80 3.94

Action
Data 32 118.87 116.52 0.48 0.79 2.02
Recharge 84 84.17 84.37 0.50 0.80 −0.24
Nothing 8 21.71 21.74 0.52 0.81 −0.15
International 16 113.72 111.30 0.48 0.79 2.17

Reward
Promo 20 126.46 125.77 0.47 0.80 0.55
Data 46 84.52 80.24 0.50 0.78 5.34
Credit/Bonus 35 63.29 64.33 0.51 0.82 −1.62
International 39 85.74 85.02 0.50 0.80 0.84

Propensity (% Treated)
[0.575, 0.786) 47 91.50 82.56 0.51 0.75 10.84
[0.787, 0.805) 46 94.81 92.86 0.49 0.80 2.10
[0.805, 0.856] 47 91.56 93.98 0.50 0.82 −2.58

information constraint: when users are treated almost always, limited individual-level

counterfactual variation restricts the model’s ability to identify heterogeneous effects,

even in large samples.

To assess whether treatment propensity is mechanically correlated with campaign

characteristics, we conduct chi-square tests between propensity bins and campaign Goal,

Action, and Reward. No significant correlation is found for Goal or Action (p-values >

0.05). For Reward, however, the correlation is significant (p-value < 0.01). Data-reward

campaigns account for 57% of campaigns in the lowest-propensity category but only

12.8% in the highest-propensity category, while credit/bonus campaigns increase from

12.8% to 36% across these categories. This pattern indicates that monetary rewards are

overrepresented among high-propensity interventions.
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