Improving Targeting with Privacy-Protected Data: Honest
Calibration of Treatment Effects®

Ta-Wei Huang Eva Ascarza
August 18, 2025
Abstract

Firms increasingly rely on conditional average treatment effect (CATE) models to tar-
get interventions and optimize marketing outcomes. However, the effectiveness of these
models depends on access to high-quality individual-level data, a condition increasingly
challenged by privacy regulations. This paper examines how differential privacy (DP), a
state-of-the-art approach for protecting customer data, affects CATE model performance.
We show that DP introduces model-dependent and heterogeneous distortions in both bias
and variance, leading to suboptimal targeting. To address this challenge, we propose an
honest model calibration method that improves CATE estimation without requiring access to
unprotected data. Rather than denoising inputs as in traditional measurement error correc-
tions, our approach calibrates model predictions using noisy but unbiased signals derived
from doubly robust scores. To prevent overfitting to noise, we implement the honesty princi-
ple through structured sample splitting: first between training and calibration sets, and then
within the calibration process itself. We provide theoretical guarantees that this method im-
proves accuracy when the calibration sample is sufficiently large. Empirical results from
both simulations and real-world data demonstrate that our approach improves CATE accu-
racy and targeting performance. It is fully compatible with DP constraints and can be easily
integrated into existing targeting pipelines.
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1 Introduction

Targeted interventions, such as promotional offers (Hitsch et al. 2024, Huang and Ascarza
2024), proactive churn prevention (Ascarza 2018, Yang et al.|[2023), and email campaigns (EI-
lickson et al.[2022)), have become a cornerstone of modern customer value management. These
strategies aim to optimize resource allocation by estimating each customer’s sensitivity to a
given intervention. However, their effectiveness depends on access to high-quality individual-
level data, which is increasingly constrained by growing privacy concerns and tightening reg-
ulatory oversight. Traditional safeguards such as anonymization, hashing, and opt-in consent
have shown important limitations, as data protected through these methods can often be re-
identified when linked with external sources (Sweeney| 1997, Narayanan and Shmatikov|2008),
Cohen 2022). As a result, regulators such as the European Data Protection Board (European
Data Protection Board 2025) and the U.S. Federal Trade Commission (Federal Trade Commis-
sion|2024) are advocating for stronger and more enforceable data protection standards.

In this context, differential privacy (DP) (Dwork 2006) has emerged as a leading solution.
DP provides rigorous guarantees that the inclusion or exclusion of any individual has minimal
influence on the output of an analysis. By injecting the right amount of random noise into data
or query results, it reduces the risk of re-identification —even in worst-case scenarios where
adversaries have access to both raw and auxiliary data. In addition, DP explicitly quantifies
and bounds privacy loss, offering a level of transparency and rigor that traditional techniques
lack. Because of these strong guarantees, DP has been widely adopted by national statistical
agencies (e.g., Kenny et al.[2021, Near et al.2023), major technology companies (e.g., Erlingsson
et al.2014, Apple|2017), and advertising platforms (e.g., Ghazi et al.[2024, Tullii et al.|2024).

To illustrate how DP protects consumer data, consider an online retailer conducting a ran-
domized controlled experiment to test the effectiveness of a promotional offer. To estimate how
different customers respond, the firm collects individual-level data, including demographics,

purchase history, and spending outcomes. While names and email addresses may be stripped



from the dataset, seemingly non-identifying attributes—such as age, gender, ZIP code, and
shopping preferences—can still pose privacy risks. A motivated attacker could cross-reference
these fields with publicly available information, such as social media profiles, loyalty program
disclosures, or product review sites. In doing so, they could re-identify specific individuals and
infer sensitive behavioral details, including how much they spend and what they buy.

Under DP protection, noise is added to both demographic attributes and purchase data be-
fore any analysis is conducted, significantly reducing the risk of re-identification. For example,
a customer who reports as “female” might be randomly recorded as “male” with a small prob-
ability, and a true monthly purchase amount of $100 could be reported with added noise, such
as $135.37. These distortions make it far more difficult for an attacker to link internal records
with external data sources, even if they gain access to the firm’s raw dataset. Importantly, even
if an attacker manages to re-identify an individual using publicly available demographic infor-
mation, DP ensures that they cannot accurately recover that customer’s purchase behavior.

Although DP is appealing from a regulatory and ethical standpoint, its very strength un-
fortunately poses significant challenges for personalization. By injecting substantial noise into
the data, DP protects consumer privacy and ensures compliance with increasingly strict regu-
lations; yet these protections also distort the inputs used to train predictive models, potentially
degrading their accuracy. This creates a pressing question for marketers: Can targeted inter-
ventions remain effective when the underlying data is deliberately perturbed? More specifi-
cally, how does DP-induced noise — whether applied to covariates, outcomes, or both — affect
a firm’s ability to estimate the conditional average treatment effect (CATE), the incremental impact
of a marketing intervention given individual customer characteristics?

The objectives of this research are twofold. First, we investigate how DP protections alter
the experimental data used for CATE estimation and, in turn, how these alterations affect the
statistical properties of state-of-the-art CATE models. We show that the noise intentionally
introduced by DP mechanisms can distort both the bias and variance of CATE predictions.

Importantly, the magnitude and direction of these distortions vary across model classes and



regions of the covariate space. These patterns have critical implications for targeted marketing
interventions, as they can cause firms to incorrectly identify which customers are most likely
to respond to a treatment, leading to inefficient targeting and suboptimal resource allocation.

Second, we propose a novel approach to improve the accuracy of existing CATE models
when estimated on DP-protected data. Although there is a substantial literature on correcting
bias from covariate measurement error, these methods are poorly suited to the unique chal-
lenges of CATE estimation under DP constraints. In particular, they (i) typically do not account
for noise in the outcome variable, and (ii) often require additional information that is either
difficult to obtain or violates privacy, such as repeated measurements of noisy variables, valid
instrumental variables for all noisy covariates, or access to clean, non-private data.

To address these limitations, we propose a novel solution, honest model calibration, which
calibrates model predictions on an independent DP-protected dataset using a proxy for CATE
that remains unbiased under differential privacy. While loosely inspired by variable calibration
methods (e.g., Sepanski and Carroll/[1993), which use small amounts of clean data to denoise
noisy variables, our method is fundamentally different in both purpose and design. Rather
than denoising covariates or outcomes with external non-private data, it is tailored specifi-
cally for DP settings where no clean data are available and operates at a different stage of the
modeling pipeline. By using a dataset independent from that used for model estimation, our
approach prevents DP noise from compounding across stages, ensuring valid calibration. Im-
portantly, it also preserves DP protection by the well-known post-processing property of DP
(Dwork et al.|2014).

To construct the unbiased proxy for model calibration, we leverage the doubly robust (DR)
score (Kennedy|2023), which combines predictions from outcome models with treatment as-
signment models to approximate individual treatment effects. A key advantage of the DR score
is that, as long as the treatment assignment mechanism is correctly specified, either through

complete randomization or a known assignment rule based on DP-protected covariates, it pro-



vides an unbiased proxy for the true CATE. This property makes the DR score a reliable target
for calibrating model predictions.

However, the noise introduced by DP creates a fundamental challenge when using DR
scores as a proxy: although remaining unbiased, the DR score becomes highly noisy under DP
protection. Directly aligning (or calibrating) model predictions with such a noisy proxy on the
same dataset risks overfitting to noise, ultimately degrading predictive accuracy. To address
this, we propose an honesty principle, where the DP-protected data is partitioned into separate
subsets for training, calibration, and validation. This separation ensures independence be-
tween model errors and proxy errors, reducing the likelihood of overfitting to DR score noise.
In addition, we develop a new variant of the gradient boosting algorithm to implement honest
model calibration, iteratively refining predictions by minimizing residuals with respect to the
DR score. This variant incorporates a step-size determination strategy that explicitly separates
calibration model construction from step-size optimization, ensuring that calibration leads to
improvements in overall accuracy.

We provide formal guarantees for the proposed algorithm, showing that under the hon-
esty condition, model calibration improves prediction accuracy when the calibration sample is
sufficiently large. We then validate our method through extensive analyses on both simulated
and real-world datasets, confirming its effectiveness under DP protection. Whether outcomes,
covariates, or both are protected, our approach substantially improves CATE estimation accu-
racy, treatment prioritization, and targeting value —allowing firms to allocate resources more
efficiently while maintaining DP protection.

Beyond accuracy gains and privacy preservation, our method offers several practical ad-
vantages for marketing practitioners. First, it is both model-agnostic and noise-agnostic: it im-
proves accuracy without requiring customization for specific CATE models or noise injection
mechanisms, making it broadly applicable across different settings. Second, it is cost-efficient,

delivering reliable improvements even with modest experimental sample sizes. Third, it is easy



to implement, computationally efficien{l] and integrates seamlessly into existing CATE predic-
tion and personalization workflows, enabling scalable deployment in real-world applications.

Our contributions are twofold. Managerially, we examine how the growing adoption of DP
protections affects firms’ ability to perform targeted interventions. As regulators and digital
platforms enforce stricter privacy standards, firms increasingly receive outcomes and covari-
ates in noise-injected form. We show that this privacy-preserving mechanism could biases
CATE estimates, increases their variance, and reduces the accuracy and stability of targeting
decisions. While prior marketing research has highlighted the value of CATE estimation for
personalization, most existing methods assume access to clean, high-fidelity data, a condition
no longer guaranteed under DP protection.

Methodologically, we introduce a new model calibration approach to improve CATE esti-
mation when the data are protected by DP. Our method departs from traditional variable cali-
bration techniques used to correct measurement error bias, which rely on clean data to denoise
variables and are incompatible with DP protection. Instead, we calibrate model predictions
directly using an unbiased proxy for the true treatment effect. To guard against overfitting
to privacy-induced noise, we employ a principled sample-splitting procedure that separates
model training from calibration. The resulting method is fully privacy-preserving, requires no
knowledge of the noise distribution, and is compatible with a wide range of CATE models,
making it well-suited for real-world deployment.

This paper is structured as follows. Section 2] outlines the connections to existing literature.
Section 3| characterizes how the implementation of differential privacy alters experimental data
and, in turn, affects the performance of popular CATE models. Section @ presents our proposed
solution and discusses its key advantages. We assess the empirical performance of the method
using simulation studies in Section[5|and two real-world datasets in Section|6} Finally, Section|7]

concludes with implications for practice and directions for future research.

1In both our simulation and empirical applications, the proposed calibration procedure increases runtime by only 10% compared to the
default approach without calibration.



2 Related Literature

Our research connects to multiple streams of literature across marketing, statistics, economics,

and computer science.

2.1 Targeted Interventions and CATE Estimation

Our research contributes to the growing literature on targeted interventions via CATE estima-
tion (Lemmens et al. 2025). Existing methods can be broadly classified into three categories
(Hitsch et al.|2024): (i) Direct methods (e.g., Causal Forest; |Wager and Athey|2018) that opti-
mize for treatment effect heterogeneity directly; (ii) Transformed outcome regression methods
(e.g., Nie and Wager|2021, Semenova and Chernozhukov|2021, Kennedy|2023), which estimate
a proxy for the true CATE and regress it on covariates; and (iii) Indirect methods (e.g., T-learner;
Kiinzel et al. 2019) that estimate potential outcomes separately and take their difference. Our
work extends this literature by proposing a model calibration framework that improves accu-
racy for all three types, especially when the data is noisy.

CATE models are increasingly applied in marketing settings such as customer retention
(Ascarza|2018), subscription (Simester et al.|2020), promotions (Smith et al.|2021, [Huang et al.
2024), and catalog mailing (Hitsch et al.[2024). Recent work highlights challenges these models
face in noisy environments. For instance, [Huang and Ascarza (2024) show that outcome noise
inflates the variance of CATE estimates and suggest using low-variance signals as a remedy.
We extend this line of work by (1) extending the analysis to settings where both outcomes and
covariates are noisy, and (2) proposing a new approach to improve CATE prediction that does

not rely on low-variance proxies.

2.2 Differential Privacy

DP has received growing attention in both academic and applied settings due to its promise
in protecting individual-level data. Most existing research has focused on developing new

privacy mechanisms and establishing their theoretical guarantees (e.g., Kasiviswanathan et al.



2011, Erlingsson et al. 2014, Ding et al.|2017). Other work has studied the trade-off between
privacy and accuracy, either from an information-theoretic perspective (Sarwate and Sankar
2014, Kalantari et al.| 2018, Zhong and Bu/[2022) or within a statistical framework (Showkat-
bakhsh et al.2018, /Amin et al.[2019). More recently, studies such as Niu et al.| (2022) and Ponte
et al.| (2025) have examined differentially private CATE estimation and targeting, focusing on
scenarios where either the CATE model or the targeting decisions must satisfy DP, while the
underlying data remains unperturbed.

Despite these advances, little research has examined how DP-protected data— where noise
is added at the source before CATE models are estimated — affects the accuracy of CATE pre-
diction, or explored methods to address these challenges. This is an increasingly important
issue for marketers, given the adoption of DP in many real-world platforms and data sources
(e.g., Apple, Google, and the U.S. Census Bureau). Our study fills this gap by conducting one
of the first investigations into the effects of DP-data on CATE estimation and targeting. In addi-
tion to documenting the privacy—accuracy trade-off, we introduce and evaluate a novel calibra-
tion method designed to improve CATE accuracy when working with DP-protected data. Our
approach does not require access to additional non-private data and remains flexible across

model classes and DP mechanisms, making it well-suited for practical deployment.

2.3 Classical Measurement Error

Our research contributes to the literature on classical measurement errors, which arise in our
context when decision-makers introduce noise into individual data for privacy protection.
Prior studies (e.g., Chesher|1991 Battistin and Chesher|2014} Abel 2018) demonstrate that such
errors can bias regression coefficients and average treatment effect estimates in observational
settings. We extend this line of research by conducting a comprehensive theoretical and empir-
ical analysis of how measurement errors affect both the bias and variance of CATE predictions
when using flexible machine learning models.

Existing bias correction methods for classical measurement errors typically follow four ap-

proaches: utilizing repeated measurements of variables (e.g., Hausman et al. 1991, Li and
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Vuong|1998, Schennach|2004, Agarwal and Singh|2021), variable calibration through additional
clean data (e.g., Sepanski and Carroll|[1993, Lee and Sepanski|1995, Chen et al.| 2005, Hu and
Ridder|2012), applying instrumental variables (e.g., Hausman et al.[1991, Schennach|2007, Yang
et al[2022), and leveraging distribution information (e.g., Pal|1980, Wolter and Fuller|1982, Car-
roll et al.|1999, Schennach and Hu 2013). However, these methods face significant limitations
when applied to correcting errors in CATE predictions under DP protection. Our research
addresses these challenges by proposing a novel formulation: treating measurement error cor-
rection as a model-level correction problem rather than a variable-level adjustment. Importantly,
our approach requires neither clean data, instrumental variables, nor repeated measurements,

making it broadly applicable in real-world settings.

2.4 Model Calibration

Methodologically, our research builds on the emerging literature on model calibration —a post-
processing approach that adjusts predictions to better match observed outcomes (Lichtenstein
et al. 1977, Platt et al.[1999). Recent work extends this idea to CATE models, using calibration to
assess alignment with empirical treatment effects (Leng and Dimmery|2024, Whitehouse et al.
2024) and improve generalizability across populations (Kern et al.[2024).

We contribute to this literature in three ways. First, we extend model calibration to address
high-noise settings, whereas most prior work has focused on goals such as fairness (Hébert-
Johnson et al.|2018), covariate shift (Kim et al.2022), or multi-objective prediction (Gopalan
et al.2021). Second, while existing calibration methods aim to align predictions with difference-
in-means estimates (e.g., Chernozhukov et al. 2018, Leng and Dimmery|2024), our approach
goes further by also improving the ranking of treatment effects across individuals —an essen-
tial aspect for targeting decisions in marketing.

Third, unlike traditional subgroup-based calibration approaches that adjust predictions
within each group individually (e.g.,|Whitehouse et al.2024), our method leverages informa-
tion across subgroups to address overfitting. Specifically, we determine adjustment magni-

tudes using data held out from the focal subgroup, drawing on the honesty principle from the
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CATE estimation literature (Athey and Imbens 2016) to improve generalization and prevent
overfitting . Fourth, we show that separating the data used for initial model training from
the data used for calibration is essential. We provide formal theoretical guarantees that honest
calibration improves accuracy asymptotically. While prior work on calibrating CATE models
(e.g.,[Whitehouse et al.[2024) has emphasized the importance of sample splitting for estimating
nuisance components such as propensity scores or outcome models, we extend this insight by

showing that sample splitting is also critical during the calibration stage itself.

3 Problem: Impact of DP Protection on CATE Prediction

In this section, we illustrate how companies apply differential privacy in their data collection,
examine how this integration alters experimental data, and discuss the resulting implications

for CATE estimation and targeting.

3.1 Preliminary: Differential Privacy

Differential privacy is a rigorous framework for protecting individual-level data while still
allowing meaningful statistical analysis. Its core principle is that the inclusion or exclusion of
any single customer should have only a negligible impact on the results. To achieve this, DP
introduces carefully designed random noise into the data or the outputs of queries, limiting
what can be inferred about any individual.

There are two major frameworks for implementing DP: central differential privacy (CDP)
and local differential privacy (LDP). They differ primarily in two ways: (i) the level of trust

required in the data collector and (ii) the stage of the data pipeline at which noise is introduced.

Central Differential Privacy (CDP). The CDP framework assumes that the firm is a trusted
entity capable of securely collecting and storing raw, customer-level data in its internal sys-
tems. Under this model, differential privacy protections are applied not at the point of data
collection but during data access and analysis. Specifically, when analysts (whether internal

teams or authorized external collaborators) query the data (e.g., to compute descriptive statis-



tics or estimate model parameters), random noise is intentionally added to the query output.
This mechanism ensures that individual-level information is obscured in the released results,
even though the underlying data remain unchanged. CDP is especially valuable in settings
where (i) there is a high risk of internal misuse of outputs, or (ii) query results are stored or

shared in environments that are less secure than the raw data repository.

Local Differential Privacy (LDP). The LDP framework assumes that the firm (or entity) stor-
ing the data cannot be fully trusted. As a result, noise is added to the data before it is trans-
mitted to the firm. Specifically, calibrated random noise is added locally, on the customer’s
device or browser, ensuring that the true customer data are never observed by the platform.
This approach provides strong privacy guarantees by design and is particularly well-suited
for settings where the data collector is untrusted, or where the data being collected are highly

sensitive and require strict privacy protection.

In practice, firms may adopt a hybrid approach to implementing DP protection, combining
both local and central mechanisms depending on the type and sensitivity of the data. For ex-
ample, consider a large e-commerce platform. Demographic variables such as gender, age, and
income (which can be used to re-identify individuals when combined with external sources
like social media) are privatized directly on the user’s device before being transmitted. This
privacy protection is achieved through LDP mechanisms, which ensure that the raw values are
never seen by the platform. In contrast, transaction data, essential for operational processes
and often serving as the ground truth for financial reporting, must be collected in their origi-
nal, unperturbed form. However, when internal analysts derive individual-level features for
targeting (e.g., RFM metrics), the company can implement CDP by adding calibrated noise to
the query results before returning them to the analyst. This approach reduces internal privacy

risks and helps prevent potential reidentification using the query outputs.
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3.2 Implication for Targeted Interventions

Next, we examine how the implementation of DP protection affects a firm’s ability to execute
targeted marketing interventions. In such settings, firms aim to deliver interventions such as
promotions or marketing messages only to customers who are expected to derive a positive
incremental benefit (Lemmens et al.|2025). To identify these high-impact individuals, firms
typically run randomized controlled experiments.n. The experimental data are then used to
estimate CATEs, which capture the expected difference in outcomes between treated and un-
treated customers, conditional on their observed covariates. Customers with the highest pre-
dicted CATEs are prioritized for targeting, allowing firms to allocate resources more efficiently
and maximize the overall impact of the intervention (e.g.,|[Yoganarasimhan et al.[2022).

Within this paradigm, we first discuss how the implementation of DP protection perturbs
the underlying experimental data. We then analyze how such noise injections affect the statis-
tical properties of commonly used CATE models, focusing on the trade-offs between privacy

protection, bias, and estimation variance.

3.2.1 Experimental Data

Typically, a firm collects three key pieces of data for each customer i participating in a random-

ized controlled experiment for designing targeted interventions:

* Treatment condition (IW; € {0,1}): whether the customer was exposed to the marketing

intervention (e.g., receiving an email campaign or not).

* Covariates (X;): a set of pre-treatment characteristics used to model heterogeneity, such as
demographic information or behavioral history (e.g., purchase frequency and recency). Note
that firms may obtain these covariates from third-party providers that apply differential pri-
vacy protections—for example, geo-location and demographic information from the U.S.

Census Bureau (Kenny et al.|2021).

* Outcome variable (Y;): the observed response of interest, such as whether the customer

clicked, converted, or how much they spent.
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The firm’s objective is to use this data to estimate a CATE model, which predicts the individ-
ualized impact of the intervention based on covariates. Formally, the CATE for customer ¢ is
defined as 7(X;) = E[Yi(1) | X;] — E[Y;(0) | X;], where Y;(W,) is the potential outcome (Rubin
1974) of individual i’s response given the treatment condition I¥;. Among these variables, the
treatment allocation W; is generally not considered sensitive from a privacy perspective. It is
typically randomized and, on its own, does not uniquely identify any customer. In contrast, de-
mographic information (such as age, gender, and income) is inherently sensitive and can often
be cross-referenced with publicly available data sources, such as social media profiles, to re-
veal customers’ true identity. As a result, differential privacy protections are typically applied
to safeguard this information.

Beyond demographics, both the outcome variable Y; and behavioral covariates (such as
past purchase history) can also reveal highly sensitive information and thus require privacy
protections. For example, consider a typical outcome in a promotional experiment: customer
spending over a specific month. If a malicious actor gains access to raw spending data, they
could cross-reference it with external sources, such as third-party credit card panels, to re-
identify individuals —even when the data are anonymized. Because spending patterns (e.g.,
transaction timing, amounts, and merchant) are often uniquely identifying, an attacker could
successfully match records to specific individuals. Once such linkage is established, additional
private attributes (e.g., location, income bracket, or spending outside the platform) could also

be inferred or directly revealed.

3.2.2 Data Distortion under Differential Privacy

When constructing a CATE model, DP protection implies that the analyst only has access to a

N, rather than the original

noise-injected version of the experimental data, D = {()7;, }Nii, W;)
dataset, D = {(V;,X;, W;)},. Specifically, instead of observing the true outcome Y; and co-
variates X;, the analyst only has access to their privatized versions, Y; and X,, when estimating

CATEs using data from randomized experiments. We model DP protection as additive noise:

171- =Y, +n’ and )N(Z = X, + 1. This additive noise formulation describes a broad class of
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DP mechanisms. For numerical variables, this includes the Laplace mechanism (Dwork et al.
2006b, Kasiviswanathan et al.2011), Gaussian mechanism (Dwork et al.2006a), and geomet-
ric mechanism (Ghosh et al. 2009), where a numeric value is perturbed by adding random
noise. For example, when an analyst queries a customer’s 30-day spending, the DP-protected
database may return a noisy value such as $135.37 instead of the true amount of $100, due
to the addition of Laplace noise. For categorical variables, the framework also applies to the
randomized response mechanism (Warner|1965, Erlingsson et al.[2014), in which the true value
is randomly flipped according to a known probability distribution. For instance, a customer

whose true gender is “female” might be reported as “male” with a certain probabilityf]

3.2.3 Impact on CATE Prediction

Conceptually, the additive noise introduced by DP mechanisms is related to the notion of mea-
surement error, wherein observed values deviate from their true counterparts due to random
perturbations. In linear regression, it is well established that measurement error in covariates
leads to attenuation bias, shrinking estimated coefficients toward zero, whereas noise in the
outcome variable does not introduce bias if the model is correctly specified and the error is
additive and independent of the regressors. While DP-induced noise is related to this classi-
cal notion of measurement error, its implications for CATE estimation are considerably more
complex, as we discuss next.

First, CATE estimation typically results in two implied outcome models, one for the treated
group and one for the control group, whose difference defines the treatment effect for each
individual (Huang and Ascarza|2024). If DP-induced measurement error introduces differ-
ential attenuation across these two models, the resulting CATE prediction may be biased in
ways not captured by classical uniform attenuation effects. Second, modern CATE models in-
creasingly rely on machine learning methods that incorporate nonlinearity and regularization

(Wager and Athey|2018| Nie and Wager| 2021} Farrell et al. 2021, Hitsch et al.2024). In these

2The randomized response technique can be reformulated as the injection of additive noise. Consider a binary variable X. The ran-

domized response with flipping probability p can be expressed as X = X + 1(X = 1)n; + 1(X = 0)no, where —1p; ~ Bernoulli(f) and
1o ~ Bernoulli(p). A similar formulation can be applied to the dummy transformation of a discrete variable with multiple possible values.
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settings, outcome noise, often dismissed as a source of bias in classic regression, can interact
with regularization in ways that introduce bias into model predictions. Importantly, this bias
is not uniform: its size and direction vary across model classes, making it difficult to address
without understanding how noise propagates through complex learning algorithms.

Third, while classical measurement error literature emphasizes bias, variance plays an equally
critical role in targeting decisions (Huang and Ascarza 2024, Fernandez-Loria and Loria 2025).
When covariates or outcomes are perturbed by DP-induced noise, the resulting increase in
the variance of CATE estimates can substantially reduce targeting precision, even in the ab-
sence of bias. For firms aiming to deploy targeted interventions, this loss in precision directly
undermines the value of targeting. As such, the impact of DP on model variance is just as
consequential as its effect on bias.

To systematically examine these issues, we analyze how DP noise affects the bias and vari-
ance of standard CATE estimators. This analysis highlights the specific challenges introduced

by DP and motivates the need for new methods to address them. Full results are provided

in Web Appendix A, where we use both analytical approximations and simulations to study

the behavior of popular CATE models under DP-induced noise. Below, we summarize the key
patterns.

First, the results show that DP-induced distortions are highly model-dependent: different
CATE estimators respond differently to the same level and type of DP noise. This has important
implications: correction methods tailored to a specific estimator may work well in one context
but fail in another, especially when a different CATE model is better suited to the data—a situ-
ation that is common in real-world applications (Rofsler and Schoder|2022). Second, the magni-
tude and direction of these distortions vary across the covariate space, so a correction method
that improves estimates in one region may inadvertently worsen them in another. Ideally, so-
lutions should adaptively correct prediction errors at the individual customer level. However,
such adaptive correction can itself lead to overfitting the DP noise. Finally, when DP is applied

to outcomes, high privacy levels can induce either strong regularization bias or substantially
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higher variance, depending on the estimator’s structure. Thus, an effective correction method
must address distortions arising not only from covariate noise but also from outcome noise.
Together, these results highlight the need for a new correction approach. In the next section,
we present a method that improves CATE estimation and targeting by overcoming these three

challenges.

4 Solution: Honest Model Calibration

4.1 Criteria for an Effective Solution

To address the challenge of CATE estimation with DP-protected experimental data, we outline
three criteria for an effective solution. These criteria are not intended to be jointly sufficient for
optimality; rather, they reflect important practical considerations that arise when developing

targeted interventions with DP-protected data.

1. Preserving Privacy Protection: The method must not require access to clean, unperturbed
data or attempt to reverse-engineer it. This ensures compliance with formal DP guarantees

and avoids re-identification risks.

2. Addressing Outcome Noise: While much of the classical measurement error literature fo-
cuses on covariate noise, distortions from outcome noise are equally important. In high-
privacy settings, noise injected into outcomes can create substantial regularization bias and
inflate the variance of CATE models, both of which must be addressed to ensure effective

targeting.

3. Avoiding Challenging Data Collection: To be practical and widely applicable, the solution
should work with (DP-protected) data that are readily available in typical applications. Ap-
proaches that rely on auxiliary information such as noise-free data, external instruments,
or repeated measurements may offer theoretical advantages but are often difficult to imple-

ment in practice.
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Table [l compares three widely used approaches from the covariate measurement error lit-
erature: repeated measurements, instrumental variables (IV), and variable calibration, against
the key criteria for privacy-preserved dataf| While each method has distinct strengths, they all
face significant practical limitations when applied in the context of differential privacy protec-
tion. We describe these next and summarize them in Table

First, repeated measurement approaches rely on obtaining multiple independent realizations
of the same variable, which is often infeasible in applied settings. For instance, firms can-
not repeatedly request sensitive information such as age or gender from users. Furthermore,
collecting additional measurements may conflict with privacy protection goals, particularly
when the purpose is to denoise the very variables subject to DP protection. Second, IV methods
are theoretically compatible with DP and can address covariate measurement error. However,
these methods do not address the problem of outcome noise. They also rely on valid instru-
ments: auxiliary variables that are correlated with the true covariate but uncorrelated with the
noise and outcome. Identifying such instruments is particularly challenging for demographic
attributes, where no natural proxies may exist. Finally, variable calibration methods require
access to a clean, non-privacy-protected dataset, which fundamentally conflicts with the pro-
tection of differential privacy.

These limitations motivate the development of a new solution that preserves DP protec-
tion, accounts for outcome noise, and avoids the need for additional data collection. While our
approach is inspired by variable calibration methods, it departs from them in a fundamental
way: rather than correcting the input data, we focus on post-estimation calibration —refining
model predictions without altering the original DP-protected inputs. This shift not only en-
sures compliance with DP but also provides a framework for improving CATE accuracy in

privacy-sensitive environments.

3There are two other potential solutions in the literature: deconvolution methods and moment calibration techniques. However, these
approaches typically rely on strong assumptions about the noise distribution (Schennach/2022), are applicable only to a narrow range of model
specifications, and do not address noise in the outcome variable. As such, they are not well-suited to our setting. For a detailed review, please

refer to|Web Appendix B.1
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Table 1: Evaluation of Classical Methods Against Critical Considerations

. Preserve Address Does Not Require .
Solution . . . L Related Literature
Privacy Protection Outcome Noise Difficult-to-Collect Data
Hausman et al.|(1991), |Li and Vuong
Repeated Measurements? X v X (1998), [Schennach| (2004), |Agarwal

and Singh|(2021)

Hausman et al.| (1991), |Schennach
Instrumental Variables? v X X (2007), Hu and Schennach| (2008),
Yang et al.|(2022)

Sepanski and Carroll|(1993), |Lee and
Variable Calibration® X v X Sepanski|(1995),/Chen et al.|(2005), Hu
and Ridder|(2012)

Note: v = satisfies the criterion; X'= does not satisfy the criterion.

1 Repeated measurement approaches aim to recover the true value of a covariate by averaging across multiple independent noisy measurements. However, this strategy raises privacy
concerns as collecting the same sensitive attribute multiple times increases the risk of re-identification and may breach DP protection. In addition, this approach is often impractical. For
example, it might not possible to repeatedly ask customers for attributes such as gender or age.

2 IV methods address measurement error bias by using auxiliary variables (instruments) that are correlated with the noisy covariate but uncorrelated with both the measurement noise and
the outcome. While DP can be maintained by adding noise to the instruments, this often causes the weak instrument problem (Andrews et al.2019). Besides, IV methods are not designed to
correct outcome noise, and it is often difficult to find valid instruments for variables such as age or gender. Finally, while nonparametric IV models offer model flexibility, adapting them for
covariate measurement error correction requires significant development.

3 Variable calibration methods use a small, separate validation dataset with clean measurements to correct for noise in a larger, noisy dataset, and then use the denoised inputs to estimate
the regression model. These methods are appealing because they can handle both covariate and outcome noise, do not require knowledge of the noise distribution, and are model-agnostic.
However, they fundamentally violate privacy guarantees, as they depend on access to noise-free (non-DP-protected) data.

4.2 Honest Model Calibration
4.2.1 Solution Concept

Building on the idea of calibration, we introduce the honest model calibration approach, which
operates entirely on DP-protected data and improves the accuracy of CATE models without
reconstructing noise-free inputs. Traditional variable calibration methods denoise covariates
or outcomes before model training (pre-processing). In contrast, our method focuses on post-
processing by calibrating the predictions of a CATE model to improve accuracy. Specifically, we
tirst train an initial CATE model using one privatized experimental dataset and then calibrate
its predictions using an independent DP-protected dataset obtained via sample splitting. As
discussed in Section the initial estimates can suffer from substantial bias and variance.
The goal of the calibration step is to align the model’s predictions with an unbiased proxy of
the true CATE using independent data. This alignment yields more accurate CATE estimates
and, in turn, more reliable targeting decisions.

Importantly, this approach satisfies the three key criteria for an effective solution (Table [I).

First, it is fully privacy-preserving. By the post-processing property of differential privacy, any
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transformation of DP-protected data remains differentially private (Dwork et al.2014). Second,
it addresses both outcome and covariate noise by directly correcting the estimation errors of the
initial CATE model, without requiring assumptions about the source of error. Finally, it avoids
the need for additional data collection, such as noise-free inputs, repeated measurements, or
external instrumental variables.

Beyond the three core criteria discussed above, our proposed solution offers two additional
practical advantages. First, it is model-agnostic. CATE estimation often relies on diverse machine
learning models (e.g., tree-based algorithms or neural networks) to capture complex treatment
effect heterogeneity. Model-specific corrections may work when the model class is fixed, but
DP noise interacts with model structures in complex and often unpredictable ways (see [Web]|
[Appendix A). As a result, corrections tailored to one model may not generalize well to others.
A model-agnostic approach avoids this limitation, providing greater robustness and flexibility.
This is especially valuable in real-world applications, where different teams or business units
may use different models, model specifications often change over time, and practitioners usu-
ally choose algorithms based on what works best empirically rather than on strict assumptions
about how the data are generated.

Second, it is noise-agnostic because it does not depend on the specific noise distribution. Al-
though DP noise is often modeled as additive, real-world implementations frequently use more
complex distributions, such as truncated geometric noise, randomized response, or discrete
Gaussian noise. Moreover, the privacy parameters and noise distributions are often unknown
to downstream analysts. For instance, advertisers may receive privatized data from a plat-
form without being told the underlying DP mechanism, or internal analysts may lack visibility
into how DP is implemented within their organization. In such cases, a flexible solution that
avoids detailed knowledge or strict assumptions about the noise distribution is more broadly

applicable.
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4.2.2 Key Steps for Honest Model Calibration

To effectively calibrate initial CATE models that may suffer from high error, two key steps are
required. The first is to construct a valid calibration target: an unbiased proxy for the true
CATE that can be estimated using only DP-protected data. For this, we leverage the DR score,
which yields an unbiased proxy of the CATE when either the conditional outcome models or
the propensity score model is correctly specified (Funk et al.2011). Although the DR score has
been widely applied in CATE estimation (e.g., Semenova and Chernozhukov|2021} Kennedy
2023), we extend its role by repurposing it as a privacy-compatible target for model calibration.

The second step is to ensure that aligning the model’s initial CATE predictions with this
noisy but unbiased target meaningfully improves predictive accuracy. To accomplish this, we
adopt the honest principle: splitting the privacy-protected dataset into two disjoint subsets.
The initial CATE model is trained on one subset (training set) and calibrated on the other (cal-
ibration set). This design reduces estimation error because the DP noise injected into each
customer’s data is independent across splits. As a result, the calibration set can effectively cor-
rect prediction errors from the training set, rather than reinforcing the same noise patterns. We

now formalize this framework and describe each key step in detail.

Calibration Target. When calibrating a model, the goal is to reduce the gap between its pre-
dictions and the true outcome of interest. In the case of CATE estimation, a key challenge is that
individual treatment effects are never directly observed (Rubin/[1974). This makes it essential
to construct a reliable proxy for calibration. Following the literature on CATE estimation (Se-
menova and Chernozhukov| 2021} Kennedy|2023), we adopt the DR score (Robins et al.[1994)
as our proxy for the true CATE:

Wi 1-W;
(X)) Y — 1 (X5)] — T=e(X)

Ti = (X)) — po(Xs) + [Y; — po(Xa)]

where 1, (X;) = E[Y; | W; = w,X;] denotes the conditional mean outcome under treatment

condition w € {0, 1}, and e(X;) = P[W; = 1 | X;] is the propensity score given covariates X;. In
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practice, the conditional mean outcome models can be estimated using flexible machine learn-
ing algorithms combined with cross-fitting techniques (Semenova and Chernozhukov|2021).
The DR score is a particularly useful proxy because of its double robustness: it yields an
unbiased estimate of the true CATE as long as either the outcome model or the propensity
score model is correctly specified. If decision-makers have access to the true propensity score,
this property ensures that 7; remains an unbiased proxy, even when the outcome models are
learned using data protected under DP, which may introduce bias. The following proposition
formalizes that the DR score remains an unbiased estimator of the true CATE under DP protec-

tion, provided it is computed using the true propensity score:

Proposition 1 (Unbiased Signal)

Under standard assumptions of positivity, unconfoundedness, and no interference, the doubly robust
score is an unbiased proxy for the true CATE when the additive noise introduced by the DP mechanism
has mean zero. That is, E [7; | X;] = 7(X;), as long as the score is computed using the true propensity

score, even if both the covariates and outcomes are DP-protected.

The proof is provided in[Web Appendix C.1| Although assuming knowledge of the true propen-

sity score may seem strong, it is practical in settings with DP protection. The assumption holds
trivially in randomized controlled trials, where treatment is assigned independently of covari-
ates. In cases of non-random treatment assignment, it remains valid if the assignment policy
is known and based on privatized covariates. In such settings, even though the true covariates
are not observed, the firm can still compute the true propensity score from the DP-protected

data. This makes the use of AIPW both feasible and unbiased under DP constraints.

Effective Model Calibration with Honest Samples. Next, we turn to the task of calibrating
a CATE model 7 using the DR score. The goal is to refine the model by aligning its predictions
with the DR score 7, typically by minimizing the mean squared residuals (7(X; | D) — )
At first glance, this objective resembles a boosting-based variant of the DR-learner (Kennedy

2023), where the DR score is treated as a pseudo-outcome for CATE and the model is iteratively
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updated to predict it. While the boosting-based DR-learner may perform well in settings with-
out DP protection, its performance can deteriorate under DP because the boosting procedure
is prone to overfitting the noise.

Specifically, when both the initial CATE model 7 and the DR score 7; are computed from
the same dataset, the DP noise injected into the data affects both, creating a positive correlation
between the model’s prediction error and the proxy error in the DR score. In practice, this
means that if noise causes the model to systematically over- or under-estimate treatment effects
for certain observations, the DR score constructed from the same noisy data will tend to exhibit
a similar error in the same direction, often with even larger magnitude. In such cases, aligning
the model’s predictions to the DR score reinforces the error instead of correcting it.

To illustrate this problem formally, suppose we evaluate the residual between a trained
CATE model and the DR score on the same dataset D used for model training. The expected
squared difference can be decomposed as:

Es [(7(X: | D) - 72| = Bp[7(Xi | D) - 7(Xy) — (7 = 7(X0))?]

= B3 [ (P(Xi | D)~ (X0)?| - 2 Bp |(F(X: | D) —(X0) &| + Bp[d] v

Variance

.

h i
True expected squared prediction error Comovement w.r.t. the proxy error

Here, ¢; denotes the approximation error of the DR score relative to the true (unobserved)
treatment effect. The first term reflects the actual squared prediction error of the model—what
we ideally want to minimize. The third term is the variance of the proxy target, which is fixed
for any calibration procedure.

The key concern lies in the second term of the decomposition. When calibration is per-
formed on the same dataset used to train the initial model, minimizing the mean squared
residuals between the predicted CATE and the DR score can inflate the comovement term.
In this case, the model may align with the idiosyncratic noise in the DR score rather than re-

duce true prediction error. Consequently, minimizing the squared residual between 7 and 7;
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does not necessarily improve accuracy and may even amplify error. This is a classic overfitting
problem, where the model learns noisy patterns instead of improving accuracy.

We address this challenge by proposing an honesty principle for model calibration under dif-
ferential privacy. Specifically, we partition the DP-protected dataset into two disjoint subsets:
one for training the initial CATE model, and the other for calculating DR scores and calibrating
the CATE model. We refer to this strategy as honest because it follows the same spirit as the
honesty principle in Causal Trees (Athey and Imbens|2016), where separate samples are used
for model fitting and prediction to prevent overfitting.

To understand how honesty helps mitigate the overfitting problem characterized in (I)), let
us consider two disjoint datasets: Derain, used for constructing the CATE model 7(-), and ﬁcal,
reserved for calibrating 7 by aligning its predictions with the DR score of individuals in Deat.
By ensuring statistically independence between 75tram and ﬁcal, we can express the expected
squared proxy residual for individual j in De, as follows:

B, | (FX5) = 52| = Es, 5, | FX5) = 7(X0)?| + B, [&] -
N > —

v~
True prediction error

Constant

2 Ep,.. [? (X)) - (Xj)] - Ep  [&]

Bias of -?(f(j)

Bias of 7

Since ,5train and ZNDcal are independent, the prediction error of the CATE model and the approxi-
mation error in the DR score are statistically uncorrelated. By Proposition |1} the DR score is an
unbiased proxy, implying that E[¢;| = 0. This eliminates the second term in the decomposition.
As a result, minimizing the observed squared residuals using D, directly reduces the true pre-
diction error without risk of overfitting, even though 7; is also computed from DP-protected
data in 15@1.

Importantly, our sample-splitting approach is conceptually different from sample splitting
and cross-fitting methods used in the existing literature (e.g., [Nie and Wager 2021, Semenova

and Chernozhukov| 2021, Kennedy|2023). Prior methods focus on ensuring that the nuisance
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components (e.g., propensity scores or outcome models) are estimated independently of the
data used to calculate DR scores. In contrast, we perform sample splitting specifically to pre-

vent overfitting to the proxy error in the DR score during model calibration. (See
for a detailed discussion of this distinction.)

4.2.3 Theoretical Guarantee

In|Web Appendix C|, we provide theoretical guarantees showing that honest model calibration

improves true CATE prediction accuracy whenever it reduces mean squared error against the
unbiased signal. Specifically, Theorem [App-I]establishes that, with high probability, the reduc-
tion in prediction error is lower-bounded by the observed residual improvement, minus com-
plexity and overfitting terms that typically shrinks as the calibration sample size increases. This
result suggests that when the calibration sample is sufficiently large, the accuracy improvement

from calibration is guaranteed to be positive and converges to the observed reduction in mean

squared residuals. In|Web Appendix C.4, we also show that performing non-honest calibration

may increase the risk of overfitting without improving accuracy, particularly when the initial
CATE model is already sufficiently expressive. In this case, the potential benefit of using a
larger sample for initial model training is limited, as it does not change the convergence rate of

with respect to the training sample size.

4.3 An Algorithm for Honest Model Calibration

We propose a boosting-based algorithm for honest model calibration. Our approach builds
on the standard gradient boosting framework (Friedman 2001), with two key modifications
to ensure honesty. First, calibration is performed using data held out from the initial model
training. Second, step-size determination is carried out using data held out from the calibration
model estimation. This layered separation helps prevent overfitting in high-noise and small-
sample settings by using independent data for each update.

Specifically, we partition the DP-protected experimental data D into three disjoint subsets:

a training set (ﬁtmm), a calibration set (ﬁcal), and a validation set (ﬁval). The initial CATE model,
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7N ﬁtrain)/ is trained exclusively on ﬂrain. Calibration is then performed using only 25ca1,
ensuring that updates are statistically independent of the data used for initial training. The
validation set Dy, is used to assess which updates lead to the greatest improvements in predic-
tive accuracy and to determine when to stop the calibration process. This three-way data split
preserves the honesty of the procedure and reduces the risk of overfitting to the approximation

error in the DR score.

Gradient Boosting for Model Calibration. We implement the calibration procedure using
a gradient boosting framework (Friedman| 2001). Let 7I°(.) denote the initial CATE model
trained on the DP-protected training set ﬁram The goal is to iteratively refine this model so
that its predictions better align with the DR scores using the DP-protected calibration set Deal.
At each iteration r = 1,..., R, we estimate a residual calibration model ¢"l(-) that captures
the discrepancy between the current model’s predictions and the DR scores. The CATE model

is then updated as follows:

where pll is the step size that controls the update magnitude. Each residual model ¢! and its
corresponding step size pl"l are estimated by minimizing the sum of squared residuals between

the updated model prediction and the DR scores over 15@1:
R - o~ 2
(pl"), &y = arg min [T[Tfl] (X,) + pe(X,) — 7‘]-] :

where C denotes the model class used for the calibration model. This iterative process continues
for R rounds, gradually improving the alignment between model predictions and DR scores
on the calibration set.

In our setting, each calibration model ¢’ is trained to predict the residual difference be-
tween the unbiased signal and the current CATE prediction, i.e., 7; — 7I"~1(X;). This learning
target follows the idea of gradient descent: at each step, the algorithm updates the model by fit-

ting to the negative gradient of the mean squared loss, which indicates the direction that most
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effectively reduces the residual error. In our case, this corresponds to the residuals between the

predicted CATEs of the current model and the DR scores since

AFU(X;) — 7)? ~

_ _ = 21y

o 2|7 = A UX;)|

Once the calibration model ¢!l is learned, the next step is to determine the step size pl"J,

which controls the size of the model update. This step size is typically chosen to minimize the

squared difference between the updated prediction and the target signal, i.e., by solving;:

r . Alr— vt T e = 2
plrl = argmme(T[ (X)) + pd(X;) - 7))

J

We adopt gradient boosting as the calibration framework for both theoretical and practical
reasons. Theoretically, boosting constructs flexible yet well-controlled function classes by ag-
gregating simple base learners. As shown in Corollary the complexity of the additive
boosting model >, pl"el](.) grows linearly with the complexity of the base learner class C.
This allows us to control overall model complexity by choosing a simple class for ¢!, such as
shallow decision trees or linear regressions. Practically, gradient boosting is computationally
efficient and straightforward to implement across a wide range of modeling environments. It
can be deployed with minimal development effort, making it particularly suitable for targeting

contexts that require scalable and easy-to-use solutions.

Honest Step Size Determination. In standard implementations of gradient boosting (e.g.,
Friedman/2001, Duan et al.[2020), both the calibration model ¢ and the step size p are estimated
using the same dataset (in our case, 25ca1). However, tuning the step size on the same data used
to fit the calibration model can also lead to overfitting, as it may overreact to noise that drives
the discrepancy between the current prediction and the DR score. To address this, we introduce
an honest step-size determination technique that separates calibration model construction from
step-size tuning. This is implemented through a data-efficient sample-splitting strategy that
ensures statistical independence between model fitting and step-size selection. Specifically,

before initiating the calibration process, we partition the calibration set ﬁcal into () disjoint
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subgroups:ﬁcal into ) disjoint subgroups: Gl ,G2.,...,G%. Then, in each boosting iteration,

cal’ “Zcal’ cal”

we perform the following steps:

1. For each ¢ € {1,...,Q}, fit a calibration model 85’”] using only the data in g“gal. The model

predicts the residual between the current prediction and the DR score, i.e., 71" 1(X;) — 7;.

2. For each fitted calibration model, determine the optimal step size ol by minimizing the
squared residuals on the remainder of the calibration data (i.e., all data in 13ca1\g~§al):

N -~ 2
Pl = arg mpin 2 [?ir—ll (X;) + pel(X;) — fj] :
jEﬁcal\éq

cal

Arl ]

3. Evaluate each candidate update (¢4, pg”) on the validation set 75va1, and select the one that

minimizes the validation loss:

~ ~ 2
¢" = argmin Z [5_\[7«71](Xk) + Pc[zr]a[f] (Xk) — %k] .
qE{l,"' 7Q}

4. Update the CATE model using the selected subgroup calibration model and step size:

7= 7l pHE

By using (i) disjoint subsets for calibration model fitting and step-size determination, and (ii) a
separate validation set to identify the most effective update, this approach reduces the risk of

overfitting to noise in the DR scoreﬁ

Early Stopping. To determine when to stop the boosting procedure, we monitor improve-
ments in predictive accuracy on the validation set, following standard early stopping practices
in the boosting literature (Friedman!2001). Specifically, the procedure is terminated once the

updated model no longer improves the squared residual losg|relative to the previous iteration:

~ ~ 2 ~ 2
PO (S ORI SR I W (o SR A I}

keﬁval k€Dya

4In[Web Appendix D.4.21 we also compare our honest step-size determination approach to two alternatives: (i) determining the step size
using the same subgroup used to train the calibration model, and (ii) a stochastic gradient descent approach, where a random subgroup is
selected in each iteration to both train the calibration model and determine the step size. Our proposed method significantly outperforms both
benchmarks.

5The improvement threshold can also be specified as a tuning parameter. A larger threshold reduces the number of updates, acting as a
form of regularization.
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Algorithm[I|presents the pseudo-code for the proposed method. To further enhance sample
efficiency, we follow the approach in (Kennedy|2023): swap the roles of ZNDtra,-n, ﬁcall and stal,

rerun Algorithm (1} and average the resulting predictions.

4.4 Implementation Considerations

Our proposed solution supports flexible model choices and hyperparameter tuning. We offer
the following recommendations to guide implementation. First, the initial CATE model should
be selected based on predictive accuracy or targeting effectiveness, as well-performing base-
lines tend to maintain their advantage after calibration in our analyses. For the nuisance mod-
els (i11 and i), while the DR score remains unbiased, we recommend following the literature
and selecting models based on their predictive performance (Nie and Wager| 2021, Kennedy
2023). Finally, to reduce overfitting and control model complexity, simple calibration models
such as linear regression are recommended.

Second, our algorithm partitions the calibration data into subgroups and updates the model
iteratively to ensure honest step-size determination. When sample sizes are small, grouping
individuals with similar initial CATE predictions or covariate values is more effective, as the
resulting homogeneity within each subgroup helps capture more stable residual patterns. For
larger samples, random grouping performs comparably well, and the choice of subgrouping
strategy becomes less critical. For hyperparameters, we recommend setting the number of sub-
groups () such that each contains at least 100 observations, and setting the number of iterations

R = @, as the benefit of reusing subgroups tends to diminish after the first update.
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Algorithm 1: Proposed Honest Model Calibration Procedure

Input: Qe N, Re N

Output: Calibrated model 7

Data: DP-protected Data D= {Dtram, el

Construct the initial CATE model 7! ()~( | Dtrain) using Dirain and generate predictions
for Dcal.

Derive the DR score {7;},.5 and {7} keD separately using the cross-fitting procedure.

~

a1, Dyal}; True Propen51ty Score e;

Divide Dcal into () subgroups (g ) based on some criteria.

forr=1,--- ,Rdo

cal> " "’ cal

Calculate the proxy residual error 7; — 7r=1l (5(]) for j e Deat.
forg=1,---,Q do

(Calibration Model Fittings) Construct a calibration model, denoted ’c)[f] ()NC 7),
trained to predlct the residual 7; — 7""1(X;) using only the data from

customers j € gcal

(Step Size Determination) Determine the step size by minimizing the squared

proxy residuals across ciustomers in Dcal\gcal

~ ~ 2
p(g’”] = arg min Z [?[r_l] (X;) + pa[[] (X;) — %j]
JEDCWI\Q

cal

end

Pick the subgroup that leads to the smallest squared proxy residuals in the
validation set ﬁval.

Generate new CATE predictions for the validation set:

AneW(Xk) — T[T 1] (Xk:) + p([l*]/c\[ (Xk ’ gcal) ke 5val'

if Zkeﬁm [Anew(Xk) - Tk] Zkepm [ (Xk) — Tk] < 0 then
‘ Update the CATE model: 7I"1(-) = 7= () + p[ el (X, | cal)

q*
end
else
| Stop calibration and return 7(-) = 7Ir=1(.).

end

end
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5 Empirical Performance: Simulation

We conduct simulation analyses for two primary purposes. First, to evaluate the performance
of the proposed method relative to several alternative benchmarks. Second, to examine how
our algorithm and competing methods behave across different sample sizes, thereby providing

insight into their asymptotic properties.

5.1 Simulation Setup
We generate an experimental sample with a binary treatment variable (W; € {0, 1}) where the
treatment assignment is completely random, with equal proportions for both treatment and

control groups. The outcome variable is generated according to the following process:
}/’L(Wl) = b(Xz) + (Wz — O5)T(XZ) + €, € ~iid N(O, 5),

1
b(X;) = 1 [sin(7X;1X;) — 2(Xiq — Xy — 0.5) + X0 X4 + 2X75 + X76],

1
7(X;) = 1 [2Xi1 — X;3c08(mX;5) + 0.5X75 — Xiq — log(Xi1)(Xia — 2.5) — 8],

where each covariate is identically and independently distributed (i.i.d.) from Uniform(0, 5).
We analyze two scenarios under the data-generating process described above. In the first
scenario, only covariates are protected under DP. Specifically, the observed covariates are noisy
versions of the true values: X;, = X, ,+7:,, where n;,, ~ Laplace(0, 2x) are i.i.d Laplace noises.
Here, Ax denotes the range of the covariates, and the e values reflects the privacy budget for
one covariate. In the second scenario, only the outcome variable is protected under DP. The
observed outcome is a noisy version of the true potential outcome: ?;(WZ) = Y;(W;) + n;, where
n: ~ Laplace(0, 2¥) and Ay is the empirical range of the outcomeﬂ For both scenarios, we
vary the privacy level € from 10 to 50 to examine the trade-off between privacy protection and
predictive accuracyf|and also vary the experimental sample size to assess the sample efficiency

of competing methods.

qWeb Appendix D.3|presents additional results where both covariates and outcomes are protected by DP. The findings are consistent.
"These values are motivated by the 2020 U.S. Census, which used a total privacy budget of 19.61; internal evaluations showed that a

budget of 12.2 offered strong privacy but introduced too much noise for downstream analyses. In our implementation, the corresponding
standard deviations for Laplace noise are as follows: {0.1,0.2,0.3,0.4, 0.5} for covariates; {1, 2, 3,4, 5} for the outcome.
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5.2 Methods for Comparison

We compare the performance of our proposed solution against three alternatives: a standard
CATE model and two simplified versions of our approach. This comparison not only estab-
lishes the superiority of our method but also quantifies the improvements gained from its in-

dividual components. We evaluate a total of four estimation methods:

1. Default (DEFAULT): This method constructs a CATE model using the full experimental
dataset D = {ﬁtrain; ﬁcal, 15%11} without any model calibration. It represents the standard

approach typically adopted by decision-makers for CATE estimation.

2. Non-honest Calibration (NON-HONEST): This method applies calibration by performing
traditional gradient boosting on the initial CATE model using the full dataset D, without
any sample splitting or honest step-size determination. Essentially, it is equivalent to the
CATE estimation framework proposed by Kennedy| (2023), with boosting methods as the

model class for CATE modeling.

3. Calibration with Sample Splitting (SPLIT-ONLY): This method performs model calibration
using 25031 and stops when there is no improvement on a third validation set ﬁval. However,
it determines the calibration model and step size using all individuals in 5@1 without honest

step-size determination.

4. Calibration with Sample Splitting and Honest Step-size Determination (PROPOSED): Be-
yond using sample splitting for model calibration, this method also implements the pro-
posed honest step-size determination procedure, in which subgroups are formed based on

the predicted values from the initial CATE model.

For the DEFAULT and NON-HONEST methods, the entire dataset is used to train the initial
CATE model, with NON-HONEST performing calibration on the same data. In contrast, the
PROPOSED and SPLIT-ONLY methods partition the same dataset into three equal-sized folds,

used respectively for model training, calibration, and validation.

30



5.3 Estimation Details

We summarize the key details of the model implementation below. Additional specifications

and technical information are provided in(Web Appendix D.1|

In our main analysis, we use the R-learner with regression forests (Nie and Wager 2021) as
both the DEFAULT method and the initial CATE model across all approaches, as it delivers the
best overall performance among the CATE models considered.

For DR socres, we construct the conditional mean outcome models used in the DR scores
using ordinary least squares (OLS) regression with squared and interaction terms for both the
initial CATE estimators and for the calibration targets. This specification was selected based
on its predictive performance among the candidate models considered. The calibration models

are similarly estimated using OLS with the same set of nonlinear terms.

5.4 Evaluation Procedure

We evaluate model performance using B = 100 bootstrap replications and report the average
values of key metrics. As a first step, we generate a holdout set ﬁholdout of Nholdout = 10,000
individuals. This set is excluded from all model estimation and calibration and is used solely
for evaluation across bootstrap replications. In each replication b, we generate an experimental
set D’ and use it to estimate CATE using each of the four different methods. Predictions are then
generated on the holdout set, and prediction errors are calculated for each method. Specifically,
the prediction error for individual [ € Dholdout is defined as err? = 7% — 7(X,), where 7 denotes
the final prediction of individual / in the b-th replication. After completing this process across

B = 100 bootstrap replications, we compute three key summary statistics to evaluate statistical

accuracy and targeting efficiency:

Mean Squared Error (MSE). We first calculate the prediction error for individual [ € 25h01dout

is defined as err} = 77 — 7(X;), where 77" denotes the final prediction of individual [ in the b-th
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replication. After completing this process across B = 100 bootstrap replications, we compute
the mean squared error (MSE)f| for each method as follows:
~ 1 1
b\2] _
E [(err))?] = EZ

N holdout |, <
b=1 leDholdout

[err?]”.

Area under the Targeting Operator Characteristic Curve (AUTOC). We use AUTOC (Yad-
lowsky et al.[2024) to assess the improvement in treatment prioritization performance achieved
by our proposed method when decision-makers rely on CATE models estimated from DP-
protected data. A higher AUTOC value indicates that the CATE model more effectively identi-
ties individuals with the greatest incremental impact from the intervention and produces better

treatment prioritization rules.

Targeting Value Improvement. We evaluate the value improvement for of the PROPOSED
method for a simple targeting rule that assigns treatment to individuals with positive pre-
dicted CATEs. Specifically, we measure the incremental value gained from targeting individ-
uals with positive predicted CATEs: V(%) = £ 37 | [m DB T(X0) - L7 > 0)] , where
77 is the predicted CATE of individual [ in the b-th bootstrap replication. We then report the
value improvement of a method 7 compared to the DEFAULT method 7P*fAUT as the percentage

difference in their targeting value, i.e., 100% x %

5.5 Results
5.5.1 Varying Privacy Level

Figure|[I]reports the MSE of the different methods across a range of privacy levels, with the left-
most point on the x-axis representing the baseline without DP protection. Figure 1a| presents
results when covariates are protected under DP, and Figure [Ib|shows results when the outcome
variable is protected. All models are trained on an experimental sample of 3,000 individuals,

and performance is evaluated on a separate holdout set of 10,000 individuals.

8In[Web Appendix D.2} we also present the mean squared bias and variance for model comparison.
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Figure 1: Mean Squared Errors Across Varying Privacy Levels

(a) Scenario 1: DP-Protected Covariates (b) Scenario 2: DP-Protected Outcome
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Note: We simulate 100 replications to compute the bootstrap MSE for each individual in the holdout set. We then average the bootstrap MSE
over a holdout set of 10k individuals for each point. The results presented here are based on using R-learner with regression forests as the
initial CATE model. Results derived from different CATE models are available in|Web Appendix D.5|

Several patterns emerge from the results. First, the PROPOSED method (red line) consis-
tently achieves the lowest MSE, regardless of whether DP is applied to covariates or outcomes.
Notably, our method also improves accuracy in non-DP settings (left-most results), suggesting
that it can enhance targeting performance more broadly, even when the noise is moderate and
not specific to DP. Second, neither the SPLIT-ONLY (blue line) nor the NON-HONEST (green
line) approach improves accuracy relative to the DEFAULT (black line). While the SPLIT-ONLY
method performs comparably to the NON-HONEST approach at lower privacy levels, it outper-
forms the NON-HONEST method under high noise level. This highlights the risk of overfitting
when calibration is conducted without sample splitting, particularly in high-noise settings.

Next, we assess the effectiveness of treatment prioritization based on predicted CATEs from
each method. Table 2| reports the AUTOC values for all approaches, along with the proportion
of bootstrap replications (in parentheses) in which each method outperforms the DEFAULT.
Consistent with earlier results, the PROPOSED method achieves the highest AUTOC across all
privacy levels. The SPLIT-ONLY method also improves upon the DEFAULT, whereas the NON-
HONEST method offers little to no improvement. These findings highlights the importance of

maintaining honesty during model calibration.
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Table 2: AUTOC Values Across Varying Privacy Levels

(a) Scenario 1: DP-Protected Covariates (b) Scenario 2: DP-Protected Outcome
Privacy PROPOSED  SPLIT-ONLY NON-HONEST  DEFAULT Privacy PROPOSED  SPLIT-ONLY NON-HONEST  DEFAULT
No 2.39 (100%) 2.36 (90%) 2.34 (68%) 2.32 No 2.42 (96%) 2.39 (84%) 2.38 (71%) 2.36
50.0 2.31(100%)  2.27 (84%) 2.25 (74%) 223 50.0 242(99%)  2.37 (84%) 2.36 (76%) 2.34
25.0 217 (100%)  2.14 (90%) 2.11 (76%) 2.08 25.0 240 (97%)  2.37 (84%) 2.34 (62%) 232
16.7 1.99 (100%) 1.96 (94%) 1.90 (56%) 1.90 16.7 2.37 (98%) 2.32 (88%) 2.28 (68%) 2.26
12.0 1.8 (100%) 1.77 (94%) 1.71 (58%) 1.70 12.0 2.32(96%)  2.29 (92%) 2.23 (61%) 222
10.0 1.61 (96%) 1.59 (92%) 1.50 (32%) 1.52 10.0 2.25(98%) 223 (96%) 2.14 (68%) 213

Note: We calculate the AUTOC values from 100 simulation replications, along with the percentage of replications in which the value of the focal
method is greater than the value of the DEFAULT approach (given in parentheses). The results presented here are based on using R-learner
with regression forests as the initial CATE model. Results derived from different CATE models are available in|Web Appendix D.5|

Table 3| summarizes the improvement in targeting value for each method relative to the
DEFAULT. We report both the percentage increase in value and the proportion of bootstrap
replications in which each method outperforms the DEFAULT. The PROPOSED method consis-
tently delivers substantial and significant gains across all levels of privacy protection, with its
advantage becoming more pronounced as the privacy level increases. By contrast, neither the
SPLIT-ONLY nor the NON-HONEST method yields meaningful improvements, and the NON-
HONEST method performs even worse than the DEFAULT when covariates are heavily distorted
by noise. These results highlight the risk of overfitting when applying a complex, data-adaptive

calibration procedure for targeting without proper sample splitting.

Table 3: Targeting Value Improvement Across Varying Privacy Levels

(a) Scenario 1: DP-Protected Covariates (b) Scenario 2: DP-Protected Outcome
Privacy PROPOSED SPLIT-ONLY  NON-HONEST Privacy = PROPOSED  SPLIT-ONLY  NON-HONEST
No 7.0% (97%) 2.4% (65%) 2.8% (75%) No 6.9% (98%) 1.2% (69%) 3.5% (76%)
50.0 8.4% (98%) 2.5% (74%) 2.5% (63%) 50.0 7.9% (98%) 1.2% (67%) 3.2% (69%)
25.0 10.6% (100%)  3.1% (71%) 2.8% (66%) 25.0 8.8% (99%) 2.1% (66%) 3.5% (79%)
16.7 13.6% (100%)  0.6% (53%) 1.7% (50%) 16.7 10.8% (96%)  0.9% (53%) 3.6% (66%)
12.5 18.6% (98%) 1.6% (52%) 1.5% (51%) 12.5 11.5% (94%)  -0.1% (62%) 1.7% (58%)
10.0 14.9% (85%) 2.6% (54%) -10.3% (32%) 10.0 13.8% (94%)  0.1% (52%) 1.0% (56%)

Note: We calculate the value improvement from 100 simulation replications, along with the percentage of replications in which the value of
the focal method is greater than the value of the DEFAULT approach (given in parentheses). The results presented here are based on the use of
R-learner as the initial CATE model. Results derived from different CATE models are available in|Web Appendix D.5)
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5.5.2 Varying Sample Sizes

Next, to examine the asymptotic behavior of each method, we compare their performance
when constructing models with experimental sample sizes ranging from 3,000 to 60,000 in-
dividuals, while keeping the privacy level fixed at a high level (¢ = 10.0). Figure 2 reports the

MSE of each method at different sample sizes for model construction.

Figure 2: Mean Squared Errors Across Varying Sample Size

(a) Scenario 1: DP-Protected Covariates (b) Scenario 2: DP-Protected Outcome
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Note: We simulate 100 replications to compute the bootstrap MSE for each individual in the holdout set. We then average the bootstrap MSE
over a holdout set of 10k individuals for each point. The results presented here are based on using R-learner with regression forests as the
initial CATE model. Results derived from different CATE models are available in|Web Appendix D.5

First, as expected, MSE decreases as the sample size increases. Notably, the PROPOSED
method (red line) consistently achieves the lowest MSE across all sample sizes, demonstrat-
ing both sample efficiency and superior performance, even with large experimental samples.
Second, once the sample size is sufficiently large, the SPLIT-ONLY method (blue line) signif-
icantly outperforms the DEFAULT (black line) and approaches the performance of the PRO-
POSED method. This pattern is consistent with Theorem which predicts that calibra-
tion on independent data improves prediction accuracy when the calibration sample is large
enough. Since both the PROPOSED and SPLIT-ONLY methods use the same additive boosting
model, their improvements in mean squared residuals eventually converge, leading to similar

accuracy as the calibration sample grows.
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Third, the NON-HONEST method (green line) yields only marginal improvements in MSE

over the DEFAULT (black line). This result is consistent with the theoretical analysis in [Web]

|Appendix C.4, which shows that when the DEFAULT model is already highly expressive, non-

honest calibration adds little value. In such cases, most residual error has already been ad-
dressed during the initial model construction, so further calibration without sample splitting
provides limited gains in improving MSE.

Table [ presents the AUTOC values for different methods across varying sample sizes. Con-
sistent with previous findings, the PROPOSED method consistently outperforms all alternatives
in treatment prioritization, achieving the highest AUTOC values across all sample sizes. Sec-
ond, when sample sizes are large, both the SPLIT-ONLY and NON-HONEST methods can out-
perform the DEFAULT approach, with SPLIT-ONLY achieving performance which is comparable

to the PROPOSED specification with large samples.

Table 4: AUTOC Values Across Varying Sample Sizes

(a) Scenario 1: DP-Protected Covariates (b) Scenario 2: DP-Protected Outcome
Sample Size  PROPOSED ~ SPLIT-ONLY  NON-HONEST  DEFAULT Sample Size  PROPOSED ~ SPLIT-ONLY ~ NON-HONEST = DEFAULT
3k 1.61 (96%) 1.59 (92%) 1.50 (32%) 1.52 3k 2.25 (98%) 2.23 (96%) 2.14 (68%) 213
6k 1.67 (100%)  1.66 (100%) 1.59 (70%) 1.58 6k 237 (100%)  2.34 (98%) 2.29 (92%) 225
12k 1.72 (100%)  1.71 (100%) 1.66 (90%) 1.65 12k 2.44 (100%)  2.42 (98%) 2.37 (90%) 2.34
24k 1.75 (100%)  1.74 (100%) 1.70 (95%) 1.68 24k 249 (100%)  2.48 (100%) 2.43 (100%) 24
36k 1.76 (100%)  1.75 (100%) 1.71 (100%) 1.70 36k 2.50 (100%)  2.49 (100%) 2.45 (100%) 2.43
48k 1.76 (100%)  1.76 (100%) 1.72 (100%) 1.70 48k 2.52(100%)  2.51 (100%) 2.47 (100%) 2.45
60k 1.77 (100%)  1.76 (100%) 1.72 (100%) 1.71 60k 2.52(100%)  2.52 (100%) 2.48 (100%) 2.46

Note: We calculate the AUTOC values from 100 simulation replications, along with the percentage of replications in which the value of the focal
method is greater than the value of the DEFAULT approach (given in parentheses). The results presented here are based on using R-learner
with regression forests as the initial CATE model. Results derived from different CATE models are available in|Web Appendix D.5

Table [5|summarizes the improvement in targeting value of each method relative to the DE-
FAULT across different sample sizes. Consistent with earlier results, the PROPOSED method
outperforms all alternatives, achieving the highest performance at every sample size. As sam-
ple size increases, the SPLIT-ONLY method begins to approach the performance of the PRO-
POSED method, whereas the NON-HONEST method delivers only marginal gains compared to

the other two calibration approaches.
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Table 5: Targeting Value Improvement Across Varying Sample Sizes

(a) Scenario 1: DP-Protected Covariates (b) Scenario 2: DP-Protected Outcome
Sample Size PROPOSED SPLIT-ONLY =~ NON-HONEST Sample Size PROPOSED SPLIT-ONLY ~ NON-HONEST
3k 14.9% (85%) 2.6% (54%) -10.3% (32%) 3k 13.8% (94%) 0.1% (52%) 1.0% (56%)
6k 17.5% (97%)  3.4% (68%) 0.7% (52%) 6k 10.7% (100%)  5.6% (88%) 2.8% (74%)
12k 13.7% (100%)  8.0% (93%) 0.0% (51%) 12k 8.3% (100%) 5.3% (94%) 2.6% (82%)
24k 11.5% (100%)  9.9% (100%) 1.1% (62%) 24k 6.6% (100%)  5.1% (100%) 2.2% (97%)
36k 10.8% (100%)  9.1% (100%) 0.9% (65%) 36k 5.6% (100%)  4.9% (100%) 1.6% (98%)
48k 10.6% (100%)  9.5% (100%) 1.3% (70%) 48k 5.5% (100%)  4.5% (100%) 1.4% (92%)
60k 11.4% (100%)  8.8% (100%) 1.5% (63%) 60k 4.2% (100%)  3.6% (100%) 1.2% (93%)

Note: We calculate the value improvement from 100 simulation replications, along with the percentage of replications in which the value of
the focal method is greater than the value of the DEFAULT approach (given in parentheses). The results presented here are based on the use of

R-learner as the initial CATE model. Results derived from different CATE models are available in|Web Appendix D.5)

Together, these results highlight the value of our proposed honest calibration algorithm
in improving model performance under DP protection. Specifically, the PROPOSED method
consistently delivers the lowest MSE, the highest AUTOC, and the greatest value improvement
across a wide range of privacy levels and sample sizes. Its performance gains are especially
clear when the privacy constraint is strong and/or the sample size is small. The SPLIT-ONLY
method also performs better than the DEFAULT method when the calibration sample is large,
which is consistent with theoretical results on the benefits of honest calibration. In contrast,
the NON-HONEST method shows limited or no improvement and performs worse under high

noise, highlighting the importance of using sample splitting during model calibration.

5.6 Robustness Checks

In Web Appendix D| we conduct a series of robustness checks. First, we replicate the sim-

ulation while applying DP protection to both outcomes and covariates. The results remain
consistent with the main findings presented above. Second, we examine alternative implemen-
tation choices for the calibration step, including different subgroup partitioning strategies. We
find that partitioning based on initial CATE predictions yields the strongest performance, while
covariate-based subgrouping also delivers comparable improvements. Third, we evaluate the
honest step-size determination against alternative boosting techniques and show that the pro-

posed method consistently outperforms these alternatives. Finally, we assess the robustness of
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our results to different model classes used in the DEFAULT and for the initial CATE models.

Across all specifications, the PROPOSED method consistently outperforms the alternatives.

6 Empirical Performance: Real-world Case Studies

We validate the proposed solution using two real-world applications that serve as established
benchmarks for CATE models (e.g., [Rofsler and Schoder2022). Both studies involve random-

ized marketing campaigns designed to encourage customer purchases.

6.1 Studies Overview
6.1.1 Study 1: Hillstrom E-mail Campaign.

The first study uses the Hillstrom dataset, originally from the MineThatData E-Mail Analytics
and Data Mining Challenge (Hillstrom|2008). This dataset includes 64k customers, who were
randomly assigned to one of three groups in an e-mail marketing experiment: a group that
received an e-mail promoting men’s merchandise, a group that received an e-mail promoting
women’s merchandise, and a control group that received no e-mail campaign. Following prior
research using this dataset (Kane et al.|2014, Devriendt et al. 2018} Rofsler and Schoder|2022), we
focus on evaluating the effectiveness of the women’s merchandise e-mail promotion compared
to no e-mail at all. Our final sample consists of 42,693 customers, evenly split between the

treatment group (21,387 customers) and the control group (21,306 customers). Further data

descriptions can be found in [Web Appendix E|

6.1.2 Study 2: Starbucks Promotional Campaign Data.

The second study uses data from a promotional campaign conducted through the Starbucks
Rewards mobile app, made available by the Udacity Data Science Program. This dataset cap-
tures an experiment in which a subset of customers was randomly offered a promotion (the
intervention) to encourage product purchases (the outcome variable). The dataset includes
126,184 customers with seven anonymous pre-treatment covariates. The sample is evenly split,

with 63,112 customers in the treatment group and 63,072 in the control group. The response
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rates are notably low —1.68% in the treatment group and 0.73% in the control group, resulting

in an average treatment effect of 0.95%. Additional details can be found in[Web Appendix FH

6.2 Implementation of DP

We consider two scenarios implementing the most common DP methods: one where pre-
treatment covariates are protected by DP and another where the outcome is protected by DP.
For discrete variables, we apply the randomized response mechanism (Dwork et al.2014). Un-
der this mechanism, the true value is observed with probability 1 — f, while with probability f,
a random draw from all possible values (each appearing with equal probability) is observed in-
stead. For continuous variables, we introduce the Laplace(c) noise. The privacy level is varied

from a “Very Low” scenario (i.e., small f and o) to a “Very High” (i.e., large f and o) scenario.

Additional implementation details can be found in|Web Appendix E.3|and E.3.

6.3 Methods for Comparison and Estimation Details

As in Section |5, we compare the PROPOSED method with the DEFAULT method, which esti-
mates the CATE model directly without honest model calibration, as well as the NON-HONEST
and SPLIT-ONLY methods. The model specifications closely follow those described in Section 5}
with the following key details.

In the main analysis, we use the R-learner with regression forests (Nie and Wager 2021) as
the DEFAULT method and as the initial CATE model across different approaches. The DR score
is computed using OLS regression for the conditional mean outcome models, as this specifi-
cation provides the highest predictive accuracy among the candidate models tested. Similarly,
the calibration models ¢ are also constructed via OLS regression. For detailed model speci-

fications and the complete set of results across different DEFAULT models, please refer to

Appendix Fland F
6.4 Performance Evaluation

To evaluate the performance of each method, we adopt a bootstrap validation procedure simi-

lar to that used by |Ascarza|(2018). Specifically, we generate B = 50 random splits, each consist-
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ing of a model construction set (70%) and a holdout set (30%). For each split, we estimate CATE
models using the four methods (PROPOSED, DEFAULT, NON-HONEST, and SPLIT-ONLY) on the
model construction set and generate CATE predictions for individuals in the holdout set. When
covariates are protected by differential privacy, noise is added to both the model construction
and holdout covariates to capture the full impact of privacy protection on targeting decisions.
In contrast, when the outcome variable is protected, we do not inject noise into the holdout set,
as it does not affect the evaluation of true model performance under DP constraints.

We evaluate each method using three metrics: First, we assess predictive accuracy using
group-level treatment effects, as the true CATE for each individual is not directly observable in
real-world data. Specifically, we divide the holdout set into ten equally sized groups based
on predicted CATE rankings, compute the group average treatment effect (GATE) using both
predicted CATEs and actual observed outcomes, and calculate the root mean squared error
(RMSE) between them. This procedure is repeated across 50 bootstrap splits, and the RMSEs
are averaged. Second, we assess treatment prioritization using the AUTOC metric, which mea-
sures how well each method ranks individuals according to their predicted treatment effects.
AUTOC is computed on the holdout set for each split and averaged across all replications.

Third, we assess targeting value improvement by estimating the policy value of each method
using the inverse probability-weighting estimator (Yoganarasimhan et al. 2022, Hitsch et al.
2024). For each method, we compute the value of a targeting policy that treats individuals with
positive predicted CATEs and report its improvement relative to the DEFAULT method. Specif-
ically, we calculate the percentage improvement in targeting value as 100% x %,

where V() denotes the estimated policy value.

6.5 Results

Table [6| presents the RMSE of GATE (multiplied by 100) for different methods, along with the
percentage of random splits where the focal method achieves a lower RMSE compared to the

DEFAULT method.

40



Table 6: RMSE of GATE (Multiplied by 100) Across Varying Privacy Levels

(a) Study 1: Hillstrom Data

. Scenario 1: DP-Protected Covariates Scenario 2: DP-Protected Outcome
Privacy
PROPOSED SPLIT-ONLY NON-HONEST DEFAULT PROPOSED SPLIT-ONLY NON-HONEST DEFAULT
No 3.96 (100%)  3.98 (100%) 7.29 (52%) 7.29 3.96 (100%)  3.98 (100%) 7.29 (52%) 7.29
Very Low  3.14 (100%)  3.19 (100%) 5.20 (52%) 5.20 4.35(100%)  4.43 (100%) 7.88 (44%) 7.86
Low 3.39 (100%)  3.43 (100%) 5.56 (46%) 5.55 4.39 (100%)  4.43 (100%) 8.18 (36%) 8.14
Medium 3.47 (100%)  3.55 (100%) 5.61 (60%) 5.62 4.92 (100%)  5.05 (100%) 8.76 (40%) 8.71
High 3.47 (100%)  3.50 (100%) 5.61 (34%) 5.56 4.99 (100%)  5.04 (100%) 8.91 (40%) 8.90
Very High  3.44 (100%)  3.48 (100%) 5.62 (42%) 5.60 5.10 (100%)  5.16 (100%) 9.33 (40%) 9.29
(b) Study 2 : Starbucks Data
. Scenario 1: DP-Protected Covariates Scenario 2: DP-Protected Outcome
Privacy
PROPOSED  SPLIT-ONLY NON-HONEST DEFAULT PROPOSED  SPLIT-ONLY NON-HONEST DEFAULT
No 0.71 (100%)  0.71 (100%) 1.40 (32%) 1.38 0.71 (100%)  0.71 (100%) 1.40 (32%) 1.38
Very Low 0.73 (100%)  0.74 (100%) 1.42 (34%) 1.41 1.59 (100%) 1.60 (100%) 2.85 (36%) 2.85
Low 0.78 (100%)  0.78 (100%) 1.44 (40%) 1.43 2.12 (100%)  2.14 (100%) 3.71 (48%) 3.71
Medium 0.80 (100%)  0.82 (100%) 1.47 (44%) 1.47 2.52 (100%)  2.52 (100%) 4.36 (48%) 4.36
High 0.84 (100%)  0.86 (100%) 1.47 (34%) 1.45 2.82 (100%)  2.84 (100%) 4.85 (36%) 4.84
Very High  0.84 (100%)  0.84 (100%) 1.42 (52%) 1.42 3.06 (100%)  3.09 (100%) 5.27 (32%) 5.27

Note: We calculate the RMSE from 50 random splits, along with the percentage of replications in which the value of the focal method is greater
than the value of the DEFAULT approach (given in parentheses). The results presented here are based on the use of R-learner with regression
forests as the initial CATE model.

Consistent with the theoretical insights from Section [4 and the simulation results in Sec-
tion 5, both the PROPOSED and SPLIT-ONLY methods improve accuracy relative to the DE-
FAULT, while the NON-HONEST method fails to do so. Moreover, while RMSE rises with
stronger protection on the outcome variable, this pattern does not always hold when noise

is applied to covariates. While this may seem counterintuitive, it aligns with our bias—variance

discussion in|Web Appendix Al Adding noise to covariates reduces the model’s ability to detect

heterogeneity, which leads to more conservative (i.e., less variable) predictions. For example, in
the Hillstrom dataset, we find that the variance of predicted CATEs from the DEFAULT method
decreases by 20% under “Very Low” covariate protection compared to the no-privacy baseline.

Table [7]reports the AUTOC values (scaled by 100) for each method across different levels of
privacy protection. First, both the PROPOSED and SPLIT-ONLY approaches consistently outper-
form the DEFAULT, whereas the NON-HONEST method sometimes fails to improve AUTOC

values. Second, consistent with earlier findings, the PROPOSED and SPLIT-ONLY methods both
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Table 7: AUTOC Values (Multiplied by 100) Across Varying Privacy Levels

(a) Study 1: Hillstrom Data

. Scenario 1: DP-Protected Covariates Scenario 2: DP-Protected Outcome
Privacy
PROPOSED  SPLIT-ONLY NON-HONEST  DEFAULT PROPOSED  SPLIT-ONLY NON-HONEST  DEFAULT
No 1.38 (82%) 1.36 (82%) 1.18 (60%) 1.17 1.37 (86%) 1.38 (82%) 1.18 (60%) 1.17
Very Low 146 (92%)  1.42 (88%) 1.17 (80%) 1.13 1.10 (76%)  1.07 (72%) 0.92 (54%) 0.91
Low 124 (94%)  1.23(98%) 0.98 (82%) 0.92 111 (82%)  1.08 (78%) 0.90 (70%) 0.87
Medium 1.12 (90%) 1.09 (86%) 0.83 (84%) 0.76 0.99 (74%) 0.95 (68%) 0.84 (62%) 0.80
High 0.98 (92%) 0.95 (90%) 0.74 (84%) 0.69 0.97 (78%) 0.96 (66%) 0.85 (72%) 0.81
Very High  0.94 (90%) 0.91 (88%) 0.69 (84%) 0.62 0.75 (86%) 0.73 (82%) 0.56 (62%) 0.52
(b) Study 2 : Starbucks Data
. Scenario 1: DP-Protected Covariates Scenario 2: DP-Protected Outcome
Privacy
PROPOSED  SPLIT-ONLY NON-HONEST  DEFAULT PROPOSED  SPLIT-ONLY NON-HONEST  DEFAULT
No 0.45 (96%) 0.44 (96%) 0.38 (64%) 0.38 0.45 (96%) 0.44 (96%) 0.38 (64%) 0.38
Very Low 043 (94%)  0.42 (86%) 0.37 (84%) 0.35 0.20 (84%)  0.20 (84%) 0.16 (92%) 0.14
Low 0.33 (92%) 0.32 (78%) 0.29 (84%) 0.27 0.13 (84%) 0.13 (80%) 0.11 (100%) 0.08
Medium 0.25 (92%) 0.24 (92%) 0.21 (82%) 0.19 0.11 (88%) 0.08 (76%) 0.06 (100%) 0.04
High 0.19 (78%) 0.19 (76%) 0.18 (78%) 0.16 0.09 (76%) 0.09 (68%) 0.07 (92%) 0.05
Very High ~ 0.19 (74%)  0.18 (74%) 0.17 (76%) 0.15 0.09 (80%)  0.09 (68%) 0.08 (92%) 0.06

Note: We calculate the AUTOC values from 50 random splits, along with the percentage of replications in which the value of the focal method
is greater than the value of the DEFAULT approach (given in parentheses). The results presented here are based on the use of R-learner with
regression forests as the initial CATE model.

outperform the NON-HONEST, with the PROPOSED method showing slightly stronger perfor-
mance than SPLIT-ONLY.

Table 8] reports the average targeting value improvement across different privacy levels.
Consistent with the ranking in Table [7, both the PROPOSED and SPLIT-ONLY methods deliver
substantial gains over the DEFAULT baseline at all levels of DP, whereas the NON-HONEST ap-
proach fails to improve value on the Hillstrom data. These results demonstrate the importance

of honest calibration for enhancing targeting performance.

6.6 Small Sample Performance

While the PROPOSED and SPLIT-ONLY methods perform similarly in the main analyses (largely
due to the ample sample sizes available in both datasets), we observe larger differences in
smaller-sample settings. Specifically, we evaluate performance when only 10% of the data is
used for model construction and 90% is reserved for holdout evaluation. In this setting, al-

though SPLIT-ONLY continues to outperform the DEFAULT, the gap between PROPOSED and
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(a) Study 1: Hillstrom Data

Table 8: Targeting Value Improvement Across Varying Privacy Levels

Scenario 1: DP-Protected Covariates

Scenario 2: DP-Protected Outcome

Privacy
PROPOSED SPLIT-ONLY NON-HONEST PROPOSED SPLIT-ONLY NON-HONEST
No No 2.25% (88%) 2.22% (92%) -0.03% (56%) 2.25% (88%) 2.22% (92%) -0.03% (56%)
Very Low 2.25% (92%) 2.13% (86%) 0.10% (50%) 2.32% (94%) 2.33% (98%) 0.06% (58%)
Low 2.28% (90%) 2.36% (92%) 0.03% (48%) 2.48% (92%) 2.51% (94%) 0.24% (66%)
Medium 2.73% (94%) 2.59% (92%) 0.10% (56%) 2.73% (98%) 2.64% (94%) 0.21% (70%)
High 2.64% (96%) 2.58% (96%) 0.12% (60%) 2.80% (94%) 2.85% (98%) 0.23% (72%)
Very High  2.88% (96%) 2.84% (98%) 0.16% (64%) 3.24% (100%) 3.18% (98%) 0.16% (66%)
(b) Study 2 : Starbucks Data
. Scenario 1: DP-Protected Covariates Scenario 2: DP-Protected Outcome
Privacy
PROPOSED SPLIT-ONLY NON-HONEST PROPOSED SPLIT-ONLY NON-HONEST
No 3.31% (100%)  3.16% (96%) 0.07% (52%) 3.31% (100%) 3.16% (96%) 0.07% (52%)
Very Low 4.84% (96%) 4.35% (94%) -0.03% (48%) 5.80% (96%) 6.44% (100%) 1.09% (78%)
Low 4.80% (96%) 5.04% (96%) -0.08% (44%) 4.53% (88%) 4.72% (80%) 1.05% (84%)
Medium 5.89% (96%) 5.48% (82%) 0.06% (56%) 5.32% (90%) 4.96% (80%) 1.16% (78%)
High 4.42% (94%) 3.94% (80%) -0.21% (48%) 4.10% (82%) 3.41% (80%) 0.93% (76%)
Very High  5.12% (100%)  4.96% (94%) 0.37% (66%) 5.09% (84%) 4.82% (84%) 1.03% (78%)

Note: We calculate the value improvement from 50 splits, along with the percentage of replications in which the value of the focal method
is greater than the value of the DEFAULT approach (given in parentheses). The results presented here are based on the use of R-learner with
regression forests as the initial CATE model.

SPLIT-ONLY widens in both predictive accuracy and targeting performance (seeWeb Appendix E.5|

and E5). In contrast, the NON-HONEST method often lowers overall accuracy and fails to im-

prove targeting value, though it may still yield modest gains in AUTOC.

6.7 Robustness Checks

We present robustness checks using alternative model classes for the DEFAULT approach and

initial CATE models in |Web Appendix E.6|and F.6. The PROPOSED method consistently out-

performs the DEFAULT in both predictive accuracy and treatment prioritization, and generally
outperforms the SPLIT-ONLY and NON-HONEST methods, especially in high-privacy settings.
While the SPLIT-ONLY method also provides improvement, the NON-HONEST method often

provides little to no improvementf| In sum, the robustness checks highlight the importance of

9The only minor exceptions are found in both datasets when using R-XGBoost and DR-XGBoost models, where there is no significant
difference in value improvement across methods because nearly all approaches predict positive CATEs for 99.9% of customers. Nevertheless,
we observe significant gains in both RMSE and AUTOC, with the PROPOSED method performing best. This indicates that targeting decisions
could still be improved, especially when intervention costs are considered or when only a subset of customers can be targeted.
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honesty in model calibration and demonstrate the consistent performance improvement of the

PROPOSED method across a variety of model classes.

7 Discussion and Future Directions

Differential privacy has gained significant attention and adoption in recent years as a robust
framework for protecting individual data while still allowing individual-level data collection.
Yet its impact on the precision of existing CATE models and on firms’ targeting capabilities
remains largely unexplored. This paper takes a first step in addressing this gap and shows,
both theoretically and empirically, that the noise introduced by DP can substantially reduce
the predictive accuracy of CATE models and weaken targeting effectiveness. These challenges
present significant hurdles for organizations that depend on privacy-protected data to deliver
targeted interventions.

While existing methods for correcting measurement error bias have been developed, they
are not well-suited for CATE estimation under DP protection. To address their limitation, we
propose a novel model calibration approach that systematically refines CATE predictions us-
ing an unbiased proxy, while preserving formal privacy guarantees. A central feature of our
method is the incorporation of the honesty principle, which helps prevent overfitting to the
proxy’s approximation errors, an issue that can be especially severe under DP noise. We fur-
ther provide a formal error reduction guarantee: when the calibration sample is sufficiently
large, the proposed algorithm leads to a provable improvement in prediction accuracy.

Our study has several limitations that point to promising directions for future research.
First, while we quantify the impact of DP on CATE estimation and targeting performance, we
are unable to directly measure the actual profitability loss due to data limitations. A more
comprehensive analysis, such as evaluating firm-level performance before and after DP imple-
mentation across multiple companies, could yield deeper insights into the economic costs of
privacy protection and inform policy design. Besides, our focus is limited to CATE prediction,

but DP affects a broad range of marketing tasks. Future research could examine its implications
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for other areas, such as demand estimation, personalization, and product recommendation,
where privacy constraints may similarly alter model performance and decision quality.

Second, our focus on treatment prioritization based on predicted CATEs reflects only one
approach to targeting. The effects of differential privacy on alternative targeting strategies
and possible remedies remain underexplored. For example, policy learning approaches (e.g.,
Kitagawa and Tetenov 2018, |Athey and Wager 2021) aim to learn treatment rules that classify
individuals based on whether their treatment effect exceeds a certain decision threshold. In
these settings, minimizing mean squared error is not directly aligned with the learning objec-
tive of these methods, which is typically cost-sensitive classification. A promising direction for
future research is to modify the learning objectives used in boosting-based calibration proce-
dures by incorporating alternative loss functions, such as cross-entropy loss for classification
(Mao et al.|2023) or expected profit loss for targeted sampling (Chen et al.2024). Tailoring the
calibration process to different objectives could better align model training with firms’ real-
world decision-making goals.

Third, our approach relies on access to an unbiased DR score for the true CATE, which
is achievable when the decision-maker conducts a fully randomized experiment or assigns
treatments based on a known propensity score and DP-protected covariates. However, in some
real-world settings, such as advertising campaigns managed by third-party platforms, the true
propensity score may be unknown, and only noisy, DP-protected covariates are shared with
the focal company, even though targeting is based on the true covariates. In such cases, the
estimated DR scores may be biased, especially when covariates are perturbed by differential
privacy noise. This bias undermines the validity of the calibration procedure, as the DR score
no longer serves as a reliable proxy for the true CATE. Addressing this limitation will require
bias correction methods for propensity score estimation under privacy constraints. Developing
such correction techniques remains an important direction for future research.

Finally, although our method is motivated by the challenge of improving CATE estimation

under DP protection, it also provides a general framework for handling noisy or error-prone
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experimental data more broadly. Our simulations and empirical analyses demonstrate that
the proposed approach not only enhances predictive accuracy under strict privacy constraints
but also improves targeting performance even in the absence of DP noise. This positions our
method as a general tool for firms seeking to target interventions when data quality is affected
by noise or measurement error. While existing measurement-error correction techniques may
also improve accuracy in non-DP settings, a systematic comparison with our approach lies

beyond the scope of this study and represents an important direction for future research.
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Web Appendix

Web Appendix A Bias and Variance of CATE Models with DP Data

In this appendix, we characterize the impact of DP protection on the prediction error of commonly-
used CATE models. We begin by decomposing the MSE between the predicted and true CATE

for a new customer (indexed by new) into squared bias and variance components:

[ (7 (Raew | D) = 7(Xaew))*] = B2 [2(Roe | D) = 7(Xeew)| + Var [ | D))

~ ~
Squared Bias Variance

where D is the DP-protected version of the experiment data D.
We analyze each component separately and derive expressions for the bias and variance
under common CATE modeling assumptions. Below, we first present the intuition using ana-

lytical derivations and then demonstrate the issues caused by DP using a simple simulation.

Web Appendix A.1 Analytical Characterization

To characterize the impact of DP, we apply the Taylor approximation, a common technique for
analyzing covariate measurement error in the literature (Chesher (1991, |Battistin and Chesher
2014). Let 7(- | D) denote the CATE model trained on the non-private dataset. Define the
injected noise into the covariates of the new individual as 7x,., and into the training data as

1p. The second-order approximation then yields:

?Xnew|D) ~ 7(Xnew | D)+

| -~ 1 ) o o -
0x0 F(Xnew | D) - (100s M) + 5 O 0 7 (Xnew | D) - (0,15 (App-1)
E‘gl . E‘A2 J

where 0% ,, 7 denotes the k-th order directional derivative of the CATE function with respect to
covariates and training data, and Z°* indicates element-wise exponentiation of matrix or vector

Z to the power k.

Bias. Finally, taking the expectation of the Taylor approximation in (App-I), the bias intro-

duced by DP noise can be approximated as:

E|#(Xnew | D) = #(Xnew | D) | 5 E [0 5 #Xnew | D)] V(i1xr 1),

1
2
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where V(7x,..,Np) is a diagonal matrix whose entries correspond to the variances of noise
added to each covariate and training example.

This result highlights two key drivers of bias under DP. First, the bias increases with the
level of noise injected for privacy protection. Stricter privacy requirements lead to larger noise
(X, s Mp) and thus greater bias. Second, and importantly, the magnitude of the bias depends on
the sensitivity of the CATE model to noise perturbations, captured by the second-order derivative
0% p 7. This stands in contrast to classical linear models where measurement error generally
induces a uniform attenuation bias (Abel 2018)E| Notably, bias under DP is not only amplified
for more flexible models but can also be significant in highly regularized models, depending
on how the model responds to perturbations in the input or training data. In addition, the
bias is not uniform across the covariate space. This means that, even when average predictive
metrics such as mean squared error (MSE) appear satisfactory, treatment effect rankings may be
systematically distorted. This poses a particular challenge for targeting tasks, where accurate

ranking is often more critical than overall error.

Variance. To analyze variance, we again use the Taylor expansion in (App-I). The difference

in variance due to DP protection is:
Var[7(Xnew | D)] — Var[7(Xpew | D)] ~

Var [A;] + Var [As] + Cov [T(Xpew | D), A1] + Cov [T (Xnew | D), Az] + Cov [A;, As].

While the variance of the first- and second-order terms is always non-negative, the covariance
terms, which capture the relationship between the model’s sensitivity to first- and second-order
perturbations and the baseline predicted CATE, can be negative. As a result, DP protection
does not necessarily lead to an increase in overall model variance.

This result can be understood intuitively. On one hand, adding noise through DP increases
the variability of CATE predictions by perturbing the inputs, especially when the model is
highly flexible and tries to capture fine-grained heterogeneity. This effect corresponds to the
non-negative variance terms in the decomposition. On the other hand, when the noise level

is high, it can obscure true variation in treatment effects, leading the model to shrink large

IThe Taylor approximation results in (Chesher| (1991) focus on the difference between r(f(new) and 7(Xnew), but do not account for the
influence of model structure or estimation procedures. In our setting, these factors are essential to understanding the full impact of DP.
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predicted CATE values (from the non-private setting) toward the average treatment effect. This
shrinkage behavior is reflected in negative covariance terms and can offset the added variance.
As a result, the overall predictive variance may actually decrease, leading to near-constant
CATE estimates across customers. This explains why DP protection does not always increase

model variance.

Web Appendix A.2 A Simulation Example

We now empirically illustrate these findings through a simple simulation exercise. Suppose a
company conducts a randomized controlled experiment with two treatment conditions (W; €
{0,1}) on a population of individuals (indexed by ). Let Y; € R represent the outcome of in-
terest, and let X, denote the pre-treatment covariate that captures heterogeneity in treatment
effects. We generate simulated experimental data with N = 2,000 observations using the fol-

lowing data-generating process:

Y= X2+ Wi 7(X;) + e, 7(X;)=(2+X;—05X7),
(App-2)
Wi ~ Ber(0.5), X; ~ Unif(—2, 2), €; ~ N(O, 1)

For illustration, we consider two scenarios separately: covariate protection under DP and
outcome protection under DP. In the first case, when covariates are protected using the Laplace
mechanism, the decision-maker observes a noisy version of the true covariates, )?i = X; +n¥,
where ;" is noise drawn from a Laplace(o) distribution. In the second case, when the outcome
of interest is protected under DP, the decision-maker observes only 571 =Y; +n} instead of the
true outcome Y;, with 1! similarly drawn from a Laplace(c) distribution.

To assess the effect of DP noise on CATE estimation and prediction, we generate 100 repli-

cations under each scenario and predict CATEs using three popular models:
1. Causal Forest (Wager and Athey|2018): We implement causal forest using the grf package
with default parameters.

2. R-XGBoost models (Nie and Wager| 2021): We implement R-XGBoost models for both the
conditional mean outcome and CATE models. Hyperparameter tuning follows the methods

implemented by the R-package rlearner provided by Nie and Wager (2021).

App-3



3. T-learner with XGBoost models: We implement the T-learner with correctly specified models.
Specifically, for each treatment condition, we estimate a regression model of the outcome on
covariates using second-order polynomial specifications. The CATE is then calculated by
subtracting the predicted outcome from the control group model from that of the treatment
group model.

For each value X\, we calculate prediction bias by averaging the predicted CATE across

100 replications and comparing it to the true CATE. To approximate variance, we compute the

variance of the predicted CATE for a given covariate value across the 100 replications.

Bias results. Figure presents the bias of predicted CATEs from different models un-
der varying noise levels. Several key patterns emerge. First, as expected, bias in predicted
CATE increases with stronger privacy protection. Second, as described in Section
DP induced bias is model-dependent. When only the covariate is protected by DP
(Figure[App-1a), all models shrink the predicted CATE toward the average treatment effect, but
the magnitude and pattern of bias vary across models. When the outcome is protected by DP
(Figure [App-1b), the differences are more noticeable, especially under high noise levels (right
panel, Figure [App-1b), R-learner exhibits significantly higher bias compared to the other two
approaches. Third, the direction and magnitude of bias in CATE estimation depend on the co-
variate values. For X, > 1.5 and X,.,w < —1, all models overestimate the CATE (exacerbation
bias), whereas for —1 < Xy < 1.5, they underestimate it (attenuation bias). This variation in
bias direction occurs because DP noise in CATE estimation pulls estimates toward the average

treatment effect rather than toward zero.

Figure App-1: Bias of CATE Predictions in the Simulation Setting
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Variance results. Figure[App-2|presents the variance of CATE predictions across different co-
variate values and models. Similar to the results when analyzing the bias, the variance of CATE
predictions is model-dependent and heterogeneous across covariate values. Moreover, when
the covariate is protected by DP (Figure[App-2a), we observe a counterintuitive result: increas-
ing the noise level decreases the variance. This occurs because all CATE models underestimate
treatment effect heterogeneity, producing predictions that cluster around the average treatment
effect. Conversely, when the outcome is protected by DP (Figure[App-3b), the variance of CATE

predictions increases substantially as the noise level rises.

Figure App-2: Variance of CATE Predictions in the Simulation Setting

(a) Scenario 1: DP-Protected Covariates (b) Scenario 2: DP-Protected Outcome
Laplace(0.5) Laplace(2) Laplace(0.5) Laplace(2)
8 8 0.6
5075 g /x
g So4

AL IR

0.25 ™~ —_—
\ —’\Q
——\ \\_-__—’/
0.00 0.0
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
Xnew Xnew
— Causal Forest — R-learner — T-learner — Causal Forest — R-learner — T-learner

Web Appendix B Additional Literature Review

This appendix provides supplementary literature context to support the main text. It reviews
classical approaches to correcting measurement error and discusses their limitations in the con-
text of differential privacy. It also summarizes related work on sample-splitting strategies for
honest estimation and model calibration, in order to highlight the conceptual differences be-

tween existing approaches and our proposed method.

Web Appendix B.1 Classical Measurement Error Bias Correction

Table summarizes canonical approaches for addressing measurement error bias in co-
variates, including repeated measurements, instrumental variables, variable calibration, distribution-
based corrections, and higher-order moments calibration. For each method, the table outlines
the core identification strategy, the typical assumptions required for validity, and the key limi-

tations that arise when these methods are applied in DP settings.
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Table App-1: Comprehensive Overview of Solutions for Measurement Error Bias

Study Flexible with Many Covariates Model Specification Estimation Method

Repeated Measurements of Variables

" Hausman et al[(1991a) Yes Polynomial Least Square
Li[(2002) Yes Nonlinear Least Square
Schennach| (2004) Yes Polynomial GMM
Agarwal and Singh (2021) Yes Linear PCA + Least Square
Instrumental Variables

" [Hausman et a1.7(l991) No Polynomial GMM
Newey|(2001) No Nonlinear GMM
Schennach| (2007) No Nonlinear GMM
Hu and Schennach| (2008) No Nonlinear MLE
Additional Clean Data

“[Bound et al.]1989) Yes Linear OLS
Sepanski and Carroll| (1993) No Nonlinear OLS
Chen et al.|(2005) Yes Nonlinear GMM
Hu and Ridder| (2012) No Nonlinear Deconvolution + MLE

" Information of Noise Distribution

" Wolter and Fuller7(1982) No Polynomial Parametric MLE
Fan and Truong| (1993) No Nonlinear Deconvolution + Kernel Estimator
Bonhomme and Robin|(2010) No Linear Deconvolution

7Higher—order Moments in Data

~ [Pall (1980) No Linear GMM
Erickson and Whited| (2002) Yes Linear GMM
Schennach and Hu|(2013) No Known functional form MLE

We also discuss these limitations in greater detail below and explain why existing methods,
though effective in traditional settings, are not well suited to the privacy-preserving context

studied in this paper.

Repeated Measurements of Variables. These techniques aim to mitigate random noise by
averaging multiple measurements of the same variable, reducing the impact of individual er-
rors. While they are theoretically capable of handling complex functional forms, they become
impractical in high-dimensional settings due to the exponential increase in the number of re-
peated measurements required as the dimensionality of the data grows. This requirement can
be resource-intensive or even infeasible in practice. Additionally, these techniques pose sig-
nificant privacy risks, as repeated data collection increases the likelihood of re-identifying in-
dividuals. This undermines privacy protections, making such methods unsuitable for use in

contexts requiring strict privacy constraints.

Instrumental Variables. These techniques use additional instrumental variables (IVs) that are

correlated with the noisy covariate but uncorrelated with the measurement error or outcome,
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serving as proxies to correct bias. However, identifying valid instruments in high-dimensional
settings is challenging, as suitable instruments are needed for many covariates. Additionally,
IV approaches often rely on linear or parametric assumptions, limiting their ability to capture
heterogeneity. Their integration with specific models also reduces model-agnostic flexibility.
Moreover, protecting instrumental variables under LDP can exacerbate the weak instruments

problem, further complicating the estimation process.

Additional Clean Data. These methods calibrate the model using a separate dataset with
noise-free measurements to correct estimates from the larger dataset. It is theoretically well-
suited in high-dimensional settings with flexible functional forms and model-agnostic appli-
cability. However, it raises significant privacy concerns because the clean dataset itself may

contain sensitive information.

Noise Distribution Information. These methods rely on maximum likelihood or deconvo-
lution kernel estimators to correct bias by incorporating knowledge of the noise distribution.
However, they are not well-suited to our setting for several reasons. First, they require strong
assumptions about the form of the noise distribution, which may not hold in practice — especially
under complex or unknown DP mechanisms. Second, they are often developed for low-dimensional
or parametric models and may not scale well to flexible, high-dimensional CATE models com-
monly used in marketing applications. Third, these approaches focus primarily on correcting
noise in covariates and do not account for noise in the outcome variable, which is equally im-

portant for CATE prediction under DP protection.

Higher-order Moments. These methods use overidentifying information from higher-order
moments to correct measurement error bias, typically under the assumption that the measure-
ment errors satisfy certain independence conditions. However, they often rely on strong distri-
butional and functional form assumptions, do not address noise in the outcome variable, and

fail to tackle the increased variance introduced by privacy-preserving noise.

Web Appendix B.2 Existing Sample Splitting Approaches in Causal Inference

Table outlines key distinctions between our proposed method and the sample-splitting
strategies employed in causal forests (Athey and Imbens 2016, Wager and Athey| 2018) and
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transformed outcome regressions for CATE estimation (Chernozhukov et al. 2018| Nie and
Wager 2021, Kennedy|2023, |Whitehouse et al. 2024). In causal forests, sample splitting is pri-
marily used to separate the partitioning stage from the treatment effect estimation within each leaf,
thereby reducing overfitting by ensuring that model selection and estimation are conducted
on independent data. In transformed outcome regressions, sample splitting serves a different
purpose: it separates the estimation of nuisance components (e.g., conditional outcome and
propensity score models) from the construction of proxy CATE scores. This ensures that errors

in nuisance models do not bias the final CATE estimates.

Table App-2: Key Distinctions Between Our Method and Existing Sample-splitting Approaches

Method Where Does Splitting Occur? Primary Goal

Partition tree structure vs. Estimate leaf-level Decouple treatment effect estimation
Causal Tree / Forest L

treatment effect. from tree partitioning

Estimate nuisance models vs. Construct the proxy o . . .
Transformed Outcome Regression Eliminate bias from nuisance estimates

score and CATE models.

1. Train the initial CATE model vs. Calibrate the

; ] initial model vs. Validate the calibration process. Avoid overfitting to the noisy proxy

Proposed Honest Calibration

2. Estimate calibration model vs. Determine the during the calibration procedure

step size.

Our setting addresses a distinct challenge: calibrating an already-fitted CATE model using
a noisy proxy for the true treatment effect—a problem that naturally arises under differential
privacy. Theoretically, the goal of our sample splitting strategy is to ensure that the calibration
target (i.e., the residual between the DR score and the predicted CATE) is not correlated with
the prediction error of the initial CATE model. This differs from other sample splitting strate-
gies in causal inference. For example, Causal Forests use sample splitting to decouple tree
construction from treatment effect estimation, reducing the risk of overfitting to observed het-
erogeneity. Similarly, in transformed outcome regressions, sample splitting ensures that bias in
the nuisance models does not have a first-order effect on the second-stage CATE model.

Furthermore, we propose a new structured sample-splitting strategy. Specifically, we divide
the data into three disjoint subsets: one for training the initial CATE model, one for calibration,
and one for validation. This additional layer of separation ensures that the calibration step
is statistically independent from both model training and evaluation. Furthermore, within

our boosting framework, we introduce an additional honesty constraint by ensuring that the
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construction of each calibration model is independent of the step-size determination. This level
of modularity introduces a novel safeguard against overfitting—one not present in standard

boosting-based CATE methods—and enhances model robustness under privacy constraints.

Web Appendix C Theoretical Guarantees

This appendix presents the formal proof of Proposition [1}and establishes the theoretical foun-

dation for the proposed honest model calibration method. Web Appendix C.1|begins by prov-

ing Proposition (1, which shows that the DR score serves as an unbiased proxy for the true
conditional average treatment effect (CATE) in randomized experiments or in settings where
treatment assignment probabilities are known (e.g, the firms using a known treatment rule

based on DP-protected covariates).

Building on this result, Web Appendix C.2| provides a high-probability lower bound on

the gain from performing honest model calibration using an unbiased signal such as the DR
score. This lower bound consists of three components: (i) the observed reduction in mean
squared residuals between the initial prediction 71! (5{]) and the DR score 7; on the calibration
set, (ii) a complexity penalty that reflects the potential of the calibration model ¢ to overfit
noise, and (iii) an overfitting error term that converges to zero as the calibration sample size
increases. The proof relies critically on sample splitting between the training and calibration
sets. This independence ensures that standard concentration bounds from (Wainwright 2019)

can be applied to control the generalization error on the calibration set.

Next, [Web Appendix C.2 derives an upper bound on the complexity of the proposed ad-

ditive boosting model class introduced in Section This bound depends on the calibration
model used. When the calibration model is relatively simple—such as a linear model or a shal-
low decision tree—the complexity penalty decreases more quickly with sample size, meaning
that the observed reduction in mean squared residuals more closely reflects the true improve-

ment in predictive accuracy.

Finally, Web Appendix C.4] explain why non-honest calibration—where the same data are

used for both model training and calibration—may fail to improve performance. This is par-

)

ticularly likely when the initial model 71°! is already highly expressive. In such cases, re-

calibrating on the same data adds little value and may instead increase the risk of overfitting.
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Web Appendix C.1 DR Score as an Unbiased Signal

Proposition 1| (Unbiased Signal)

Under standard assumptions of positivity, unconfoundedness, and no interference, the DR score is an
unbiased proxy for the true CATE when the additive noise introduced by the DP mechanism has mean
zero. That is, E [7; | X;] = 7(X;), as long as the score is computed using the true propensity score, even

if both the covariates and outcomes are DP-protected.

Proof. First, we rearrange the DR score as follows:

¥ = [Wf - “;K";jﬁ] + [ﬁl(f(i | D) - (1 _ V!) — ho(Xi | D) (1 - ﬁ‘_Zﬁ)] ,

T
- _ (. >

Y '
IPW term Noise term

where 7i1(X; | D) and 7io(X; | D) are the estimated conditional mean outcome models for each

treatment condition. The conditional expectation for the IPW term can be written as

E |:W1?z _ (1-W,)Y;

€e; 1762'

x|

e l—e;

=Mm=u&yEFHmﬂxJ+PWFmXJE[%H%ﬂjJ
—_— g —_

=e; :1761
— E[Y; | W; = 1,X;] —E[Y; | W; = 0,X,]
=E[Y; | W; =1,X;] —E[Y; | W, =0,X;] (since the additive noise has mean zero)

= ElY;(1) | X;] —E[Y;(0) | X;] = 7(X;) (by the unconfoundedness assumption).

The conditional expectation for the noise term can be written as
B[ D) (1- 1) — (X | D) (1-122) | x| -

Eln& D) 1x] - (1- 2K gl & (D) x)] - (1o ) o,

1—e;

"

=0 since E[W;|X;]=¢; =0 since E[W;|X;]=e;

Combining these two results, we have E [7; | X;] = 7(X;). =
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Web Appendix C.2 Error Improvement Bound for Honest Calibration

Next, we prove a lemma showing that, for an unseen customer, the expected squared residual
between the predicted CATE and an unbiased signal (in our setting, the DR score) is equiva-
lent—up to a constant (i.e., the variance of the unbiased signal) —to the true mean squared
error between the predicted and true CATE. This result implies that, the risk bound on the pop-
ulation mean squared residuals also serves as a valid bound on the true CATE prediction error.
Therefore, bounding the generalization error of the empirical residuals with respect to the DR

score is equivalent to bounding the generalization error of the true CATE.

Lemma 1 (Equivalence of Population Excess Risk and True Risk)

Let ?()N(i) denote a CATE estimate trained on Dy, and let 7(X;) represent the true CATE. We define
the population excess risk for a holdout customer from the same distribution as the difference between (i)
the mean squared residual between the model’s predictions and the unbiased signal 7,, and (ii) the mean

squared proxy error of the doubly robust score relative to the true CATE:
~ ~ . 2\ 2
EF, ) =E[FXi) —7)*] - E [(T(XZ) — %) ] :
Then, this excess risk is exactly equal to the mean squared error between the model’s CATE predictions

and the true CATE, i.e., £(7,7) = E[(?(iz) — T(Xz))Q]

Proof. We first note that

E[(?(iz) - 7V_i)2 | 75traisz‘]

E[72(X:) | Dirain, Xi| — 2E[7F(Xs) | Digains Xi|E[7: | Xi] + E[72 | X,]
— E[#2(X,) | Diain: Xi| — 2E[F(X,) | Dygain, X: |E [T | Divain, Xi] +E2[# | X,] + Var[# | X,]
= E[72(X:) | Divain, Xi] — 2E[F(X;) | Dirain, Xi] - 7(X;) + 72(X;) + Var[# | X;].

since # is unbiased and 7 is independent of 7. Similarly, we have
E [(T(Xi) — #)” | Digain: X] — 2(X,) - 2r(X)E [# | Xi] + B2[# | X,] + Var[# | X,]

= 73(X;) — 27%(X;) + T3(X;) + Var[F; | Xi]| = Var[# | X;].

Combining these two observations together, we have
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E [(?(il) o 7v—i)2 ’ ﬁtraina Xz] - E[(T(Xl) - ’73)2 ’ ﬁtrain, Xz]
= E[%Q(iz) | ﬁtraina Xz] - QE[?Q(XJ | ﬁtrainu XZ] . T(XZ) —+ 7'2(XZ»)
=K [(?(Xz) - T(Xz))Q | 5train>Xz‘] .

Taking expectation of the above result over the distribution of ﬁrain, X, gives the lemma. m

We now establish an upper bound on the true error improvement for a generic honest cal-
ibration algorithm, which combines a baseline predictor 71! trained on a training set with a

calibration model . fitted on an independent calibration set.

Theorem App-1 (Error Reduction Bound for Honest Model Calibration)
Assume that the DR score 7; is bounded for every customer. Let 25tmz-n and ﬁml be two independent
i.i.d. samples from the same distribution. Let 71°) be a bounded baseline CATE estimator trained only on
ﬁtmin. Assume that the calibration model h € H is estimated by minimizing the mean-squared residuals
between the prediction and the unbiased signal on ﬁcal Jie.,
70(X;) 1= arg 5?1%2% 2 (FUX) + h(X;) - )’
J€Deal

where H is a bounded model class. Then, for every 0 < 6 < 1, with probability at least 1 — ¢,

E[(F(X,) — 7(X.))’] — H(F(X) — 7(X))’] > Aew — 43, (H) — 4By | EH)

n

where n denotes the sample size of the calibration data, B is a constant, and A, denotes the empirical

improvement in mean squared residuals, i.e.,

1

T on

Aca NG (X)) — %) - % > (7°U(X;) — 7)° (= 0 by construction of h).

JEDeu JEDca

Proof. Define the empirical mean squared residual over the calibration set as

Lo(h) == Y (X)) + h(X)) - 7)".

J e,Dcal

Also, define the corresponding population mean squared residual as

L(h) :=E [(?(f(i) +h(X;) - ﬁ)2] .
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Step 1 (General Rademacher Bound). We apply a standard generalization bound using empir-
ical Rademacher complexity. Specifically, by Theorem 4.10 in Wainwright (2019), for all h € ‘H
and with probability at least 1 — ¢, the difference between the empirical loss and the population

loss can be bounded as:

|L(h) — zn(h)\ < 25%(7—[) + 2B M, (App-3)

n

where R, () denotes the empirical Rademacher complexity of the function class H evaluated
on the calibration sample, and B is the upper bound on the loss (such a bound exists since 7; is
bounded and both 7 and H are classes of bounded functions).

Step 2 (Rademacher Bound for Baseline and Calibrated Predictors). We now apply the gen-
eral bound to two specific functions in H: the baseline (uncalibrated) predictor and the
calibrated predictor.

e For the baseline predictor 7I°!, we consider the case where the calibrated predictor corre-

sponds to no correction. Plugging into yields:
L(0) = Ly,(0) — 2R, (H) — 2B4/ /),
* For the calibrated predictor, we denote by g the function selected via calibration to minimize
empirical loss. Applying gives:
L(h) < Ln(h) + 2R, (H) + 2B/ 822,

Step 3 (Rearrange). Subtract the lower bound for L(0) from the upper bound for L(h):

~ ~

L() = L(0) < La(h) = Lo(0) + 4R, (H) + 284/ 2420,

By definition, the improvement in empirical calibration loss is given by A, = f/n(O) — En(h)

Also, by Lemmal (I} we have

L(h) — L(0) = [L(ﬁ) —-E [(T(Xi) — %i)Q]] _ [L(O) -E [(T(Xz‘) - ﬁ)z]]

Combining these results together, the inequality becomes:

E| (X)) + hX) - 7(X0)*| — B[ (X)) = 7(X0)*| < —Aar + 4T (1) + 284/ 2520,

n
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Finally, multiplying —1 on both sides of the inequality gives the result. m

The bound indicates that when the calibration model £ is trained to reduce empirical mean
squared residuals on a held-out calibration set, this improvement generalizes to unseen cus-
tomers at the population level. By Lemma (1} such residual reduction also translates into im-
proved prediction accuracy, albeit limited by a model-dependent overfitting term and a ran-
dom noise term that diminishes with calibration sample size. This result highlights an impor-
tant trade-off in the design of the calibration procedure. On one hand, richer function classes
provide greater flexibility to fit complex residual patterns and reduce in-sample error. On
the other hand, they also introduce a higher risk of overfitting, which is captured by larger
Rademacher complexity terms in the bound. From a practical standpoint, this suggests that
careful selection of the calibration model class —balancing expressive power with regulariza-
tion —is important for ensuring reliable gains in prediction performance, particularly when

working with limited calibration data.

Web Appendix C.3 Error Improvement Bound for Adaptive Boosting

Motivated by this trade-off, we adopt the function class used in the additive boosting algorithm
as our calibration model. This class provides sufficient expressive power to improve upon a
broad range of baseline models, while maintaining control over model complexity through
constraints on the base learners and step sizes at each iteration. To formalize this idea, we first

define the model class induced by the boosting procedure under consideration.

Definition App-1 (Additive Boosting Class)
Let C be a class of functions such that for every c € C, we have |c(-)| < C almost surely, for some constant

C > 0. For an integer R > 1 and a constant p > 0, we define the calibration function class H as

R
Hi= {h() | ()= Y e, e e, 0 < [l < o}
r=1

Next, we derive the upper bound on the empirical Rademacher complexity of H and incor-

porate it into Theorem to obtain the final improvement bound.

Corollary App-1 (Error Reduction Bound for Honest Additive Boosting)
Consider the additive boosting algorithm for the honest model calibration procedure in Theorem
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Then, the expected error improvement follows the following bound:

E[(7(X) + (%) — 7(X0)*] - E[(PK0) ~ 7(X0))*] < ~Aea +8pRRL(C) + 2By 222,

n

Proof. Write S(f) :=n~' >, | 0:f(x;). First, observe that

R
R,(H) = E, [ sup Z p[T]S(C[T])] :
lol

rl|1<p, clt,....c[RleC .

Since sup,<; p s = p|s| for any s € R, we obtain

R
sup Z plrs (= ﬁz sup |S(c)|.

ol <p, cl!]

Furthermore, since [S(c)| < sup,cc S(c) + sup,cc[—S(c)], we have sup ¢ |S(c)| < 2%,(C). Com-

bining the steps and pulling out the deterministic factors, we obtain:
R, (H) < 20RR,(C).
Finally, inserting the above bound to Theorem [App-1|gives the result. m

This result suggests that overfitting can be controlled by adopting simpler model classes —
such as linear models or shallow decision trees—commonly used as base learners in gradi-
ent boosting algorithms. These models strike a favorable balance between expressive power
and statistical stability and, under standard conditions,— typically achieve an O(1/4/n) con-

vergence rate for generalization error.

Web Appendix C.4 Generalization Error for Non-honest Model Calibration

Note that Theorem fails to hold without honesty in the calibration step, i.e., if the train-
ing set ﬁtmin and the calibration set 75ca1 overlap. In this case, the initial estimator 719 is no
longer independent of the calibration data, and thus the functional class H used in the calibra-
tion procedure becomes a random class that depends on the data.

Then, what happens if the calibration procedure is performed on the same dataset used to
construct 71°? In this case, we lose the independence between model training and calibration,

and as a result, we can only bound the gap between the true prediction error (71! — 7)2 and the
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empirical mean squared residuals (71° —7)? using the Rademacher complexity of the composite
model class T +H = {7I% + h: 701 e T h e H}. Specifically, using the same technique, we can
show that with probability 1 — 4,

E[(7I(X,) + (X)) - 7(X))°] < % 3 FEX +h(X) — ) + 2R (T +H) +2B —bgfj/é),

where m denotes the training sample size. Note that if the baseline model class 7 is already suf-
ficiently expressive such that the empirical mean squared residuals are small using 71/ alone,
then performing additional calibration on the same data (i.e., without honesty) offers limited
potential for further error reduction, even when the training sample is large. At the same
time, it increases the risk of overfitting, since S%m(T + H) is greater or equal to ‘)Af‘tm(T) Thus,
without sample splitting, calibration may degrade rather than improve generalization perfor-
mance. While using the entire sample (i.e., avoiding splitting) would improve estimation due
to a larger sample size, this benefit is limited in practice. Specifically, neither the Rademacher

log(2/6)

complexity term R,.(T + H) nor the stochastic error term changes in order of m.

Web Appendix D Additional Details and Results for the Simulation Anal-

yses in Section 5

In this appendix, we provide implementation details about the simulation analyses described

in Section 5of the main document and present robustness checks.

Web Appendix D.1 Details on Model Specifications

Constructing the Initial CATE Model. In our main analysis, we implement the R-learner
(Nie and Wager 2021) using regression forests from the grf package with default parameters

for both the conditional mean outcome models and the CATE model. The true propensity score

is used to construct Robinson’s transformation. In|{Web Appendix D.5, we provide additional

robustness checks for different initial CATE models.

Constructing the DR Score for Model Calibration. To construct the DR score, we use a fixed
propensity score (e = 0.5) since the treatment assignment is completely randomized. We eval-

uate three candidate models for the conditional mean: linear regression, linear regression with
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interactions, and regression forests. The training set consists of 1,000 individuals (500 treated
and 500 non-treated), while the holdout evaluation set includes 2,000 individuals (1,000 treated
and 1,000 non-treated). Table reports the mean squared error (MSE) of each model in
predicting the outcome. Since linear regression with interactions yields the lowest prediction
error, we select it as our preferred model for the DR score. Additionally, we use the same
model to construct calibration models. Notably, the conditional mean model used in the DR
transformation and calibration process does not align exactly with the data-generating process.

However, the algorithm still effectively reduces the MSE of CATE predictions.

Table App-3: MSE of Conditional Outcome Models Across Varying Privacy Levels

(a) Scenario 1: DP-Protected Covariates (b) Scenario 2: DP-Protected Outcome
Privacy  Regression  Regression with Interactions  Regression Forest Privacy  Regression  Regression with Interactions ~ Regression Forest
No 33.4 29.6 33.1 No 33.4 29.5 33.6
50.0 34.0 30.6 34.2 50.0 35.1 31.1 35.0
25.0 36.1 33.7 36.3 25.0 41.3 37.5 414
16.7 39.2 37.8 39.7 16.7 51.6 48.6 51.7
12.5 414 40.9 41.3 12.5 65.8 63.3 65.6
10.0 434 43.0 43.1 10.0 83.9 81.7 84.4

Determine Number of Subgroups and Number of Iterations. Next, we investigate the sensi-
tivity of our solution to the pre-specified number of subgroups (Q)) and the number of iterations
(R). We start by illustrating the bias-variance trade-offs for the number of subgroups. Fig-
ure displays the predictive error metrics when applying the proposed solution Across
Varying values of () under two scenarios with high privacy protection. As we increase the
number of subgroups, the bias decreases for both scenarios, while the variance correspond-
ingly increases. This outcome showcases a classic bias-variance trade-off commonly observed
in machine learning models: increasing model complexity may enhance precision but concur-
rently introduce additional variability. Notably, when the outcome is protected by DP, changes
in ) do not significantly affect overall accuracy. On the other hand, when the covariates are
protected by DP, using the smallest value of () achieves the lowest MSE.

g’;] in each iteration (capped at 50 iterations) when ap-

Figure|App-4|illustrates the step size p

plying the proposed solution Across Varying numbers of subgroups (i.e., varying values of ().
Generally, the step sizes approach zero before the completion of the first () iterations, regard-

less of the chosen value for (). This observation suggests that performing R = () iterations is
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Figure App-3: Predictive Errors of Proposed Method Across Varying Numbers of Subgroups

(a) Scenario 1: DP-Protected Covariates (b) Scenario 2: DP-Protected Outcome
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typically sufficient for the proposed solution, thereby providing a practical guideline for setting

this hyperparameter.
Figure App-4: Step Size in Each Iteration
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Note: Each point is calculated by averaging the mean step size over 100 bootstrap replications. We present results from the case when the covariates are
protected by DP with e = 10.0, but the pattern remains the same across different privacy levels. We use R-learner with regression forests as the initial
CATE model.

Web Appendix D.2 Bias and Variance

To further examine how the PROPOSED method enhances predictive accuracy, we extend the
analysis in Section |5 by decomposing the mean squared error (MSE) into its squared bias and

variance components. These metrics are computed as follows:

1. (Mean Squared Bias) We calculate the average deviation of model predictions from the actual

2
CATEs, ie., E [(e?“ﬁ)} = Moo ZieDholdout [g Dt erri]

2. (Mean Variance) We calculate the average variability in the model’s predictions across indi-

viduals in the holdout set when the model is trained with different model construction sets,
. T~ B ~ NN 2
ie, Var[7] = £ >, , m D ie Dyortons {(7X) -E[F(X)])"}-
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Figure App-5: Statistical Accuracy Across Varying Sample Sizes
(a) Scenario 1: DP-Protected Covariates
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(b) Scenario 2: DP-Protected Outcome
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Note: We simulate 100 replications to compute the bootstrap MSE for each individual in the holdout set. We then average the bootstrap mean
over a holdout set of 10,000 individuals for each point. The results presented here are based on the use of R-learner with regression forests as
the initial CATE model.

Figure[App-5|presents the mean squared error, squared bias, and variance of different meth-
ods across varying sample sizes. First, we find that the NON-HONEST method achieves the
smallest squared bias because its initial CATE model is trained on a sample three times larger
than that used by the PROPOSED and SPLIT-ONLY methods. However, as the sample size in-
creases, the squared bias of the PROPOSED method decreases to a level comparable to that of
the NON-HONEST method, whereas the SPLIT-ONLY method does not exhibit the same im-
provement. Second, despite its lower bias, the NON-HONEST method consistently shows sig-
nificantly higher variance than the other methods. This is due to overfitting to noise in the
DR score. Together, these findings confirm the importance of the honesty principle in mitigating

overfitting when the DR score is noisy.
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Web Appendix D.3 Results for DP-protection on Both Outcome and Covariates

In this appendix, we present results where both the outcome and covariates are protected un-
der differential privacy. Specifically, we consider five privacy levels (very low, low, medium,
high, and very high) corresponding to total privacy budgets ranging from 4 to 20 for both the
outcome and covariates. We then replicate the previous analyses under these settings to assess

model performance across different levels of privacy protection.

Varying Privacy Levels. Figure[App-6|presents the MSE, squared bias, and variance of differ-
ent methods across different privacy levels, where we apply R-learners with regression forests
as the DEFAULT method and the initial CATE models. The results are consistent with the find-
ings from the main analysis.

Figure App-6: Statistical Accuracy Across Varying Privacy Levels
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Note: We simulate 100 replications to compute the bootstrap MSE for each individual in the holdout set. We then average the bootstrap mean
over a holdout set of 10,000 individuals for each point. The results presented here are based on the use of R-learner with regression forests as
the initial CATE model.

Table reports the AUTOC values across different privacy levels. The PROPOSED
method consistently outperforms other approaches, achieving the best performance across all
privacy levels. Table presents the value improvement of different methods across vari-

ous privacy levels. The results align with the findings from the main analysis.
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Table App-4: AUTOC Values Across Varying Privacy Levels

Privacy PROPOSED SPLIT-ONLY NON-HONEST DEFAULT
No 2.37 (96%) 2.34 (75%) 2.33 (48%) 233
Very Low 2.3 (100%) 2.26 (76%) 2.22 (52%) 222
Low 2.14 (100%) 2.11 (83%) 2.08 (75%) 2.06
Medium 1.92 (100%) 1.90 (96%) 1.81 (46%) 1.81
High 1.64 (92%) 1.66 (97%) 1.54 (57%) 155
Very High 1.36 (83%) 1.40 (92%) 1.26 (48%) 1.28

Note: We calculate the AUTOC value from 100 simulation replications, along with the percentage of replications in which the value of the focal
method is greater than the value of the DEFAULT approach (given in parentheses). The results presented here are based on the use of R-learner
with regression forests as the initial CATE model.

Table App-5: Targeting Value Improvement Across Varying Privacy Levels

Privacy PROPOSED SPLIT-ONLY NON-HONEST
No 5.3% (84%) —1.4% (36%) 1.0% (64%)
Very Low 8.8% (100%) 0.7% (56%) 0.2% (56%)
Low 12.5% (100%) 1.1% (56%) 4.5% (64%)
Medium 15.3% (100%) 1.1% (56%) —4.3% (40%)
High 14.2% (84%) 6.4% (72%) —18.1% (24%)
Very High 24.7% (72%) 21.8% (68%) —68.2% (12%)

Note: We calculate the value improvement from 100 simulation replications, along with the percentage of replications in which the value of
the focal method is greater than the value of the DEFAULT approach (given in parentheses). The results presented here are based on the use of
R-learner with regression forests as the initial CATE model.

Varying Sample Sizes. Figure presents the MSE, squared bias, and variance of differ-
ent methods across varying sample sizes under the high privacy level. Table reports the
AUTOC values across different sample sizes. Table presents the value improvement of

different methods across various sample sizes. The results align with the findings in Section

Figure App-7: Statistical Accuracy Across Varying Sample Sizes
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Note: We simulate 100 replications to compute the bootstrap MSE for each individual in the holdout set. We then average the bootstrap mean
over a holdout set of 10,000 individuals for each point. The results presented here are based on the use of R-learner with regression forests as
the initial CATE model.

App-21



Table App-6: AUTOC Values Across Varying Sample Sizes

Sample Size PROPOSED SPLIT-ONLY NON-HONEST DEFAULT
3k 1.36 (83%) 1.4 (92%) 1.26 (48%) 1.28
6k 1.45 (96%) 1.42 (92%) 1.33 (76%) 1.30
12k 1.57 (100%) 1.54 (100%) 1.45 (88%) 1.40
24k 1.6 (100%) 1.55 (100%) 1.47 (100%) 1.42
36k 1.61 (100%) 1.58 (100%) 1.49 (100%) 1.45
48k 1.62 (100%) 1.60 (100%) 1.50 (100%) 1.46
60k 1.65 (100%) 1.64 (100%) 1.55 (100%) 1.50

Note: We calculate the AUTOC value from 100 simulation replications, along with the percentage of replications in which the value of the focal
method is greater than the value of the DEFAULT approach (given in parentheses). The results presented here are based on the use of R-learner
with regression forests as the initial CATE model.

Table App-7: Value Improvement Across Varying Sample Sizes

Sample Size PROPOSED SPLIT-ONLY NON-HONEST
3k 24.7% (72%) 21.8% (68%) —68.2% (12%)
6k 75.8% (92%) 74.6% (92%) —50.6% (20%)
12k 81.6% (100%) 77.9% (100%) -13.5% (24%)
24k 67.5% (100%) 55.5% (100%) 3.8% (65%)
36k 86.1% (100%) 83.9% (100%) 1.7% (72%)
48k 70.2% (100%) 74% (100%) 11.2% (80%)
60k 57% (100%) 60.4% (100%) 4.4% (80%)

Note: We calculate the value improvement from 100 simulation replications, along with the percentage of replications in which the value of
the focal method is greater than the value of the DEFAULT approach (given in parentheses). The results presented here are based on the use of
R-learner with regression forests as the initial CATE model.

Web Appendix D.4 Additional Benchmarks for Honest Model Calibration

In this appendix, we provide additional benchmarks for model calibration to further demon-
strate the value of our PROPOSED solution. Specifically, we evaluate (i) different subgroup
partitioning strategies within the PROPOSED method to assess the impact of within-group ho-
mogeneity in the subgroup cross-learning strategy and (ii) stochastic gradient boosting (Fried-
man 2002) for honest calibration to compare the effectiveness of our proposed subgroup cross-

learning approach against a standard machine learning technique.

Web Appendix D.4.1 Alternative Subgroup Partitioning Strategies.

We compare three alternative subgroup partitioning strategies to splitting individuals based

on their predicted CATEs from the initial CATE predictions.

1. Partitioning based on covariate values: We use K-means clustering on covariate values to define

the subgroups.

2. Partitioning based on the outcome: We categorize individuals based on the outcome variable.
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3. Partitioning randomly: We generate random subgroups of individuals.

Figure presents the MSE, squared bias, and variance across different sample sizes
under high privacy levels. Overall, all subgroup partitioning strategies improve accuracy com-
pared to the DEFAULT method. When the sample size is large, performance remains similar
across different subgroup partitioning strategies.

Figure App-8: Statistical Accuracy Across Varying Sample Sizes: Subgroup Partitioning
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(b) Scenario 2: DP-Protected Outcome

MSE Squared Bias Variance

Value

X
\g\%,(:xhx_x M

V—

O A

20 40 60 20 40 60 20 40 60
Sample Size (in Thousands)

> Default <+ Proposed—Random “: Proposed-Outcome <+ Proposed—Covariate < Proposed

Note: We simulate 100 replications to compute the bootstrap MSE for each individual in the holdout set. We then average the bootstrap mean
over a holdout set of 10,000 individuals for each point. The results presented here are based on the use of R-learner with regression forests as
the initial CATE model.

Web Appendix D.4.2 Alternative Boosting Methods

In this appendix, we compare several alternative boosting procedures for model calibration.

We first consider the alternative honest model calibration methods.

Calibration with Sample Splitting and Subgroup Updates (SPLIT-SUBGROUP). This method
performs model calibration using a separate calibration dataset Dea1 and stops when there is no
improvement on a third validation set Dyal. We apply subgroup-based calibration (e.g., White-

house et al.2024), where subgroups are formed based on the predicted CATEs from the initial
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model. Calibration models are trained separately within each subgroup, and the one that yields
the greatest reduction in mean squared error (MSE) is selected. Unlike our proposed method,

the step size is determined using data from the same subgroup rather than other subgroups.

Calibration with Stochastic Gradient Boosting (SPLIT-SGB). This method performs model
calibration using a separate calibration dataset De1 and stops when there is no improvement on
a third validation set D,,;. In each iteration, we apply the stochastic gradient descent method
to update the model. We randomly sample 20% of individuals from the calibration set, then
use them to construct the calibration model and determine the step size.

Figure presents the MSE, squared bias, and variance of different methods across dif-
terent privacy levels. Overall, the alternative honest model calibration methods do not improve

accuracy and instead exhibit significantly higher bias.

Figure App-9: Statistical Accuracy Across Varying Privacy Levels: Alternative Boosting Methods
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Note: We simulate 100 replications to compute the bootstrap MSE for each individual in the holdout set. We then average the bootstrap mean
over a holdout set of 10,000 individuals for each point. The results presented here are based on the use of R-learner with regression forests as
the initial CATE model.

In addition, we examine the value of the proposed honest step-size determination in set-

tings without a separate calibration set (NON-HONEST-CROSS). Figure [App-10| presents the
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MSE, squared bias, and variance of different methods across different privacy levels. Consis-
tent with our theoretical insights, we find that honest step-size determination enhances predic-
tive accuracy, even without using a separate dataset for model calibration.

Figure App-10: Statistical Accuracy Across Varying Privacy Levels: Honest Step-size Learning
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Note: We simulate 100 replications to compute the bootstrap MSE for each individual in the holdout set. We then average the bootstrap mean
over a holdout set of 10,000 individuals for each point. The results presented here are based on the use of R-learner with regression forests as
the initial CATE model.

Web Appendix D.5 Robustness Checks for Different Initial CATE models

In this section, we further evaluate the performance of two different approaches for the initial

CATE model:

1. Causal Forest (Wager and Athey|2018): We implement causal forest using the grf package

with default parameters.

2. DR-learner with regression forests (Kennedy|2023): We construct the DR-learner by regressing
the cross-fitted doubly robust scores on the covariates. All regression models (including the
conditional mean outcome models and the final CATE model) are estimated using regression

forests with default parameters from the grf package.
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3. R-XGBoost models: Similar to the R-learner with regression forests used in the main analysis,
we implement R-XGBoost models for both the conditional mean outcome and CATE models.

Hyperparameter tuning follows the methods implemented by Nie and Wager (2021).

4. DR-XGBoost models: Similar to the DR-learner with regression forests, we implement DR-
XGBoost for both the conditional mean outcome and CATE models. Hyperparameter tuning

follows the methods implemented by Nie and Wager| (2021).

Results for the T-learner (Kiinzel et al.|2019) using both regression forests and XGBoost are
available upon request. Overall, regardless of the initial CATE models, our proposed solution
yields to the smallest predictive error and best targeting performance Across Varying privacy

levels and experiment sample sizes.

Web Appendix D.5.1 Results for Causal Forest

Varying Privacy Levels. Figure presents the MSE, squared bias, and variance of dif-
ferent methods across different privacy levels, where we apply Casual Forest as the DEFAULT
method and the initial CATE models. Table reports the AUTOC values across differ-
ent privacy levels. Table presents the value improvement of different methods across

various privacy levels. Overall, the results align with the findings from the main analysis in

Section 5.5

Varying Sample Sizes. Figure presents the MSE, squared bias, and variance of dif-
ferent methods across different sample sizes, where we apply Casual Forest as the DEFAULT
method and the initial CATE models. Table reports the AUTOC values across differ-
ent sample sizes. Table presents the value improvement of different methods across

various sample sizes. Overall, the results align with the findings from the main analysis in

Section 5.5
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Figure App-11: Statistical Accuracy Across Varying Privacy Levels: Causal Forest

(a) Scenario 1: DP-Protected Covariates
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Note: We simulate 100 replications to compute the bootstrap MSE for each individual in the holdout set. We then average the bootstrap mean
over a holdout set of 10,000 individuals for each point.

Table App-8: AUTOC Values Across Varying Privacy Levels: Causal Forest

(a) Scenario 1: DP-Protected Covariates (b) Scenario 2: DP-Protected Outcome
Privacy PROPOSED SPLIT-ONLY NON-HONEST DEFAULT Privacy PROPOSED SPLIT-ONLY NON-HONEST DEFAULT
No 2.38 (82%) 2.34 (56%) 2.35 (54%) 2.35 No 2.38 (78%) 2.34 (56%) 2.34 (45%) 2.34
50.0 2.33 (94%) 2.28 (70%) 2.28 (56%) 2.28 50.0 2.38 (78%) 2.35 (50%) 2.34 (37%) 2.35
25.0 2.19 (90%) 2.15 (66%) 2.13 (50%) 2.13 25.0 2.36 (84%) 2.32 (54%) 2.31 (38%) 232
16.7 2.00 (82%) 1.98 (68%) 1.94 (32%) 1.96 16.7 2.34 (69%) 2.31 (49%) 2.29 (26%) 2.32
125 1.81 (80%) 1.79 (72%) 1.73 (28%) 1.77 12,5 2.31 (77%) 2.27 (59%) 2.22 (31%) 226
10.0 1.63 (82%) 1.63 (82%) 1.55 (24%) 1.60 10.0 2.26 (74%) 2.23 (63%) 2.17 (23%) 222

Note: We calculate the value improvement from 100 simulation replications, along with the percentage of replications in which the value of
the focal method is greater than the value of the DEFAULT approach (given in parentheses).

Table App-9: Targeting Value Improvement Across Varying Privacy Levels: Causal Forest

(a) Scenario 1: DP-Protected Covariates (b) Scenario 2: DP-Protected Outcome
Privacy PROPOSED SPLIT-ONLY NON-HONEST Privacy PROPOSED SPLIT-ONLY NON-HONEST
No 10.1% (96%) 3.6% (68%) 8.9% (84%) No 9.7% (97%) 2.8% (72%) 5.6% (76%)
50.0 10.4% (98%) 1.9% (64%) 6.4% (78%) 50.0 9.1% (92%) 1.8% (61%) 5.3% (72%)
25.0 12.7% (98%) —3.4% (48%) 7.9% (86%) 25.0 10.6% (93%) —1.7% (52%) 6.6% (73%)
16.7 13.4% (84%) —3.4% (42%) 5.3% (56%) 16.7 12% (90%) —5.1% (41%) 8.4% (76%)
12.5 14.9% (86%) —15.9% (24%) 11.0% (60%) 12.5 13.8% (92%) —6.9% (36%) 7.1% (71%)
10.0 16.8% (92%) —26.4% (22%) 4.4% (58%) 10.0 11.5% (86%) —11.1% (29%) 2.5% (53%)

Note: We calculate the value improvement from 100 simulation replications, along with the percentage of replications in which the value of
the focal method is greater than the value of the DEFAULT approach (given in parentheses).
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Figure App-12: Statistical Accuracy Across Varying Sample Sizes: Causal Forest
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Note: We simulate 100 replications to compute the bootstrap MSE for each individual in the holdout set. We then average the bootstrap mean
over a holdout set of 10,000 individuals for each point.

Table App-10: AUTOC Values Across Varying Sample Sizes: Causal Forest

(a) Scenario 1: DP-Protected Covariates (b) Scenario 2: DP-Protected Outcome
Sample Size PROPOSED SPLIT-ONLY NON-HONEST DEFAULT Sample Size PROPOSED SPLIT-ONLY NON-HONEST DEFAULT
3k 1.63 (82%) 1.63 (82%) 1.55 (24%) 1.60 3k 2.26 (74%) 2.23 (63%) 2.17 (23%) 222
6k 1.69 (92%) 1.69 (92%) 1.64 (30%) 1.58 6k 2.35 (92%) 2.31 (58%) 2.29 (40%) 2.30
12k 1.74 (98%) 1.73 (98%) 1.7 (50%) 1.65 12k 2.42 (94%) 2.4 (80%) 2.38 (74%) 237
24k 1.75 (100%) 1.75 (100%) 1.73 (70%) 1.68 24k 2.45 (100%) 2.45 (95%) 2.43 (85%) 242
36k 1.76 (100%) 1.76 (100%) 1.74 (85%) 1.70 36k 2.48 (92%) 2.47 (90%) 2.46 (70%) 245
48k 1.77 (100%) 1.77 (100%) 1.75 (90%) 1.70 48k 2.49 (98%) 2.48 (100%) 2.47 (100%) 247
60k 1.78 (100%) 1.78 (100%) 1.76 (90%) 1.71 60k 2.50 (96%) 2.49 (80%) 2.49 (90%) 248

Note: We calculate the value improvement from 100 simulation replications, along with the percentage of replications in which the value of
the focal method is greater than the value of the DEFAULT approach (given in parentheses).

Table App-11: Targeting Value Improvement Across Varying Sample Sizes: Causal Forest

(a) Scenario 1: DP-Protected Covariates (b) Scenario 2: DP-Protected Outcome
Sample Size PROPOSED SPLIT-ONLY NON-HONEST Sample Size PROPOSED SPLIT-ONLY NON-HONEST
3k 16.8% (92%) —26.4% (22%) 4.4% (58%) 3k 10.1% (82%) —11.6% (28%) 3.0% (52%)
6k 12.9% (90%) —12% (26%) 5.5% (58%) 6k 8.2% (98%) —0.1% (52%) 2.6% (66%)
12k 5.1% (94%) —1.6% (56%) 1.4% (58%) 12k 6.6% (100%) 2.9% (84%) 3.8% (92%)
24k 5.8% (95%) 2.5% (74%) 1.5% (60%) 24k 3.6% (100%) 2.8% (95%) 1.8% (95%)
36k 5.7% (100%) 3.1% (83%) 3% (85%) 36k 3.3% (95%) 2.0% (90%) 2.1% (90%)
48k 3.5% (96%) 2% (87%) 0.3% (52%) 48k 1.8% (93%) 1.7% (90%) 0.9% (90%)
60k 2.5% (90%) 2.9% (100%) 0.5% (61%) 60k 1.1% (88%) 0.7% (85%) 0.6% (82%)

Note: We calculate the value improvement from 100 simulation replications, along with the percentage of replications in which the value of
the focal method is greater than the value of the DEFAULT approach (given in parentheses).
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Web Appendix D.5.2 Results for DR-learner with Regression Forests

Varying Privacy Levels. Figure presents the MSE, squared bias, and variance of dif-
ferent methods across different privacy levels, where we apply DR-learner with regression

forests as the DEFAULT method and the initial CATE models.

Figure App-13: Statistical Accuracy Across Varying Privacy Levels: DR-learner with RFs
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Note: We simulate 100 replications to compute the bootstrap MSE for each individual in the holdout set. We then average the bootstrap mean
over a holdout set of 10,000 individuals for each point.

Table [App-12| reports the AUTOC values across different privacy levels. Table |App-13

presents the value improvement of different methods across various privacy levels. Overall,

the results align with the findings from the main analysis in Section

Table App-12: AUTOC Values Across Varying Privacy Levels: DR-learner with RFs

(a) Scenario 1: DP-Protected Covariates (b) Scenario 2: DP-Protected Outcome
Privacy(e) PROPOSED SPLIT-ONLY NON-HONEST DEFAULT Privacy(e) PROPOSED SPLIT-ONLY NON-HONEST DEFAULT
No 2.35 (92%) 2.32 (80%) 2.3 (62%) 229 No 2.37 (96%) 2.34 (72%) 2.31 (54%) 231
50.0 2.28 (96%) 2.24 (76%) 2.22 (66%) 2.20 50.0 2.36 (96%) 2.33 (84%) 2.29 (55%) 23
25.0 2.13 (98%) 2.10 (87%) 2.06 (63%) 2.05 25.0 2.34 (98%) 2.31 (83%) 2.27 (56%) 227
16.7 1.96 (96%) 1.93 (90%) 1.87 (48%) 1.88 16.7 2.32(99%) 2.28 (85%) 2.23 (56%) 223
125 1.76 (96%) 1.73 (92%) 1.68 (43%) 1.68 12.5 2.30 (98%) 2.26 (88%) 2.20 (57%) 2.19
10.0 1.56 (100%) 1.55 (95%) 1.47 (29%) 1.49 10.0 2.22 (100%) 2.19 (88%) 2.13 (60%) 2.10

Note: We calculate the value improvement from 100 simulation replications, along with the percentage of replications in which the value of
the focal method is greater than the value of the DEFAULT approach (given in parentheses).
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Table App-13: Targeting Value Improvement Across Varying Privacy Levels: DR-learner with RFs

(a) Scenario 1: DP-Protected Covariates (b) Scenario 2: DP-Protected Outcome
Privacy(e) PROPOSED SPLIT-ONLY NON-HONEST Privacy(e) PROPOSED SPLIT-ONLY NON-HONEST
No 7.2% (94%) 1% (64%) 1.8% (58%) No 7% (96%) 1.6% (58%) 1.1% (52%)
50.0 9.9% (100%) 2.2% (66%) 4.3% (78%) 50.0 8.1% (97%) -0.1% (62%) 2.0% (60%)
25.0 10.3% (98%) 1.1% (56%) 2.2% (60%) 25.0 9.9% (98%) 0.5% (56%) 3.4% (66%)
16.7 12.6% (96%) -0.8% (58%) 1.4% (54%) 16.7 11.1% (96%) 2.1% (66%) 3.1% (58%)
125 16.2% (94%) -3.2% (46%) -0.1% (50%) 12.5 11.3% (99%) 1.7% (68%) 0.1% (46%)
10.0 17.5% (94%) -4.8% (44%) -11.6% (30%) 10.0 13.2% (100%) 3.4% (76%) 0.8% (56%)

Note: We calculate the value improvement from 100 simulation replications, along with the percentage of replications in which the value of
the focal method is greater than the value of the DEFAULT approach (given in parentheses). The results presented here are based on the use of
DR-learner with regression forests as the initial CATE model.

Varying Sample Sizes. Figure[App-14]presents the MSE, squared bias, and variance of differ-
ent methods across different sample sizes, where we apply DR-learner with regression forests
as the DEFAULT method and the initial CATE models. Table reports the AUTOC val-
ues across different sample sizes. Table presents the value improvement of different
methods across various sample sizes. Overall, the results align with the findings from the main

analysis in Section

Figure App-14: Statistical Accuracy Across Varying Sample Sizes: DR-learner with RFs
(a) Scenario 1: DP-Protected Covariates
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Note: We simulate 100 replications to compute the bootstrap MSE for each individual in the holdout set. We then average the bootstrap mean
over a holdout set of 10,000 individuals for each point.
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Table App-14: AUTOC Values Across Varying Sample Sizes: DR-learner with RFs

(a) Scenario 1: DP-Protected Covariates (b) Scenario 2: DP-Protected Outcome
Sample Size PROPOSED SPLIT-ONLY NON-HONEST DEFAULT Sample Size PROPOSED SPLIT-ONLY NON-HONEST DEFAULT
3k 1.56 (100%) 1.55 (94%) 1.47 (29%) 1.49 3k 2.22 (100%) 2.19 (88%) 2.13 (60%) 2.10
6k 1.66 (100%) 1.64 (94%) 1.60 (76%) 158 6k 2.33 (100%) 2.29 (88%) 2.25 (88%) 221
12k 1.70 (100%) 1.68 (100%) 1.64 (88%) 1.62 12k 2.39 (100%) 2.37 (100%) 2.33 (100%) 2.30
24k 1.73 (100%) 1.72 (100%) 1.67 (93%) 1.66 24k 2.44 (100%) 2.43 (100%) 2.38 (100%) 2.35
36k 1.74 (100%) 1.73 (100%) 1.69 (95%) 1.67 36k 2.47 (100%) 2.45 (100%) 2.42 (100%) 240
48k 1.75 (100%) 1.74 (100%) 1.70 (97%) 1.69 48k 2.47 (100%) 2.47 (100%) 2.42 (100%) 241
60k 1.75 (100%) 1.74 (100%) 1.70 (96%) 1.69 60k 2.48 (100%) 2.48 (100%) 2.44 (100%) 242

Note: We calculate the value improvement from 100 simulation replications, along with the percentage of replications in which the value of
the focal method is greater than the value of the DEFAULT approach (given in parentheses).

Table App-15: Targeting Value Improvement Across Varying Sample Sizes: DR-learner with RFs

(a) Scenario 1: DP-Protected Covariates (b) Scenario 2: DP-Protected Outcome
Sample Size PROPOSED SPLIT-ONLY NON-HONEST Sample Size PROPOSED SPLIT-ONLY NON-HONEST
3k 37.3% (94%) 3.4% (54%) 9.8% (62%) 3k 29.4% (98%) 10.9% (80%) 18.2% (82%)
6k 35.1% (100%) 19.9% (88%) 16.9% (84%) 6k 23.2% (100%) 14.9% (100%) 11.8% (94%)
12k 25.2% (100%) 18.3% (98%) 9.6% (94%) 12k 18.2% (100%) 15.2% (98%) 9.1% (100%)
24k 17.5% (100%) 16.0% (100%) 4.0% (92%) 24Kk 14.2% (100%) 12.2% (100%) 5.8% (100%)
36k 16.5% (100%) 15.0% (100%) 3.0% (94%) 36k 11.9% (100%) 11.0% (100%) 4.1% (100%)
48k 13.5% (100%) 12.5% (100%) 3.3% (95%) 48k 10.4% (100%) 9.7% (100%) 3.8% (100%)
60k 15.7% (100%) 14.7% (100%) 3.6% (95%) 60k 9.9% (100%) 9.7% (100%) 3.4% (100%)

Note: We calculate the value improvement from 100 simulation replications, along with the percentage of replications in which the value of
the focal method is greater than the value of the DEFAULT approach (given in parentheses).

Web Appendix D.5.3 Results for R-learners with XGBoost Models

Varying Privacy Levels. Figure presents the MSE, squared bias, and variance of dif-
ferent methods across different privacy levels, where we apply R-XGBoost models as the DE-
FAULT method and the initial CATE models. Table reports the AUTOC values across
different privacy levels. Table presents the value improvement of different methods
across various privacy levels. Overall, the results align with the findings from the main analy-

sis in Section 5.5

Varying Sample Sizes. Figure[App-16|presents the MSE, squared bias, and variance of differ-
ent methods across different sample sizes, where we apply R-XGBoost models as the DEFAULT
method and the initial CATE models. Table reports the AUTOC values across differ-
ent sample sizes. Table presents the value improvement of different methods across

various sample sizes. Overall, the results align with the findings from the main analysis in

Section 5.5
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Figure App-15: Statistical Accuracy Across Varying Privacy Levels: R-XGBoost

(a) Scenario 1: DP-Protected Covariates
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Note: We simulate 100 replications to compute the bootstrap MSE for each individual in the holdout set. We then average the bootstrap mean
over a holdout set of 10,000 individuals for each point.

Table App-16: AUTOC Values Across Varying Privacy Levels: R-XGBoost

(a) Scenario 1: DP-Protected Covariates (b) Scenario 2: DP-Protected Outcome
Privacy(e) PROPOSED SPLIT-ONLY NON-HONEST DEFAULT Privacy(e) PROPOSED SPLIT-ONLY NON-HONEST DEFAULT
No 2.32(72%) 2.31 (72%) 2.27 (48%) 227 No 2.36 (93%) 2.33 (93%) 2.27 (67%) 225
50.0 2.26 (100%) 2.23 (84%) 217 (72%) 213 50.0 2.35 (87%) 2.33 (83%) 2.28 (67%) 224
25.0 2.10 (96%) 2.07 (92%) 2.00 (88%) 1.93 25.0 2.33 (97%) 2.29 (83%) 2.24 (83%) 218
16.7 1.91 (88%) 1.89 (86%) 1.84 (68%) 1.81 16.7 2.27 (97%) 2.25 (97%) 2.18 (87%) 2.10
125 1.72 (88%) 1.69 (88%) 1.65 (88%) 1.56 125 2.22 (90%) 217 (70%) 2.13 (73%) 2.06
10.0 1.49 (80%) 1.48 (80%) 1.42 (72%) 1.38 10.0 2.16 (90%) 2.10 (83%) 2.07 (87%) 1.96

Note: We calculate the value improvement from 100 simulation replications, along with the percentage of replications in which the value of
the focal method is greater than the value of the DEFAULT approach (given in parentheses).

Table App-17: Targeting Value Improvement Across Varying Privacy Levels: R-XGBoost

(a) Scenario 1: DP-Protected Covariates (b) Scenario 2: DP-Protected Outcome
Privacy(e) PROPOSED SPLIT-ONLY NON-HONEST Privacy(e) PROPOSED SPLIT-ONLY NON-HONEST
No 4.8% (72%) 4.1% (64%) 0.3% (40%) No 10.0% (93%) 7.3% (90%) 1.7% (63%)
50.0 14.1% (96%) 11.7% (84%) 4.1% (73%) 50.0 9.3% (77%) 7.7% (70%) 2.5% (67%)
25.0 25.0% (98%) 22% (88%) 11.0% (92%) 25.0 14.3% (90%) 10.5% (80%) 5.3% (70%)
16.7 18.2% (80%) 16% (76%) 4.0% (60%) 16.7 21.4% (97%) 18.6% (97%) 9.1% (73%)
12.5 36.8% (88%) 28.7% (85%) 3.9% (63%) 12,5 20.1% (95%) 13.1% (73%) 7.7% (73%)
10.0 40.3% (76%) 37.7% (79%) —0.2% (36%) 10.0 35.7% (93%) 26.9% (82%) 18.6% (83%)

Note: We calculate the value improvement from 100 simulation replications, along with the percentage of replications in which the value of
the focal method is greater than the value of the DEFAULT approach (given in parentheses).
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Figure App-16: Statistical Accuracy Across Varying Sample Sizes: R-XGBoost

(a) Scenario 1: DP-Protected Covariates
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Note: We simulate 100 replications to compute the bootstrap MSE for each individual in the holdout set. We then average the bootstrap mean
over a holdout set of 10,000 individuals for each point.

Table App-18: AUTOC Values Across Varying Sample Sizes: R-XGBoost

(a) Scenario 1: DP-Protected Covariates (b) Scenario 2: DP-Protected Outcome

Sample Size PROPOSED SPLIT-ONLY NON-HONEST DEFAULT Sample Size PROPOSED SPLIT-ONLY NON-HONEST DEFAULT
3k 1.49 (80%) 1.48 (80%) 1.42 (72%) 1.38 3k 2.16 (90%) 2.10 (83%) 2.07 (87%) 1.96

6k 1.59 (92%) 1.57 (82%) 1.53 (88%) 1.46 6k 2.30 (84%) 2.25 (72%) 2.25 (72%) 211

12k 1.66 (92%) 1.64 (86%) 1.6 (84%) 1.54 12k 2.37 (96%) 2.36 (96%) 2.36 (96%) 223

24k 1.71 (83%) 1.7 (70%) 1.68 (90%) 1.66 24k 2.46 (75%) 2.45 (74%) 2.45 (69%) 237
36k 1.73 (81%) 1.72 (80%) 1.70 (80%) 1.68 36k 2.49 (81%) 2.48 (75%) 2.48 (75%) 242
48k 1.73 (85%) 1.73 (77%) 1.73 (83%) 1.72 48k 2.51 (93%) 2.50 (85%) 2.50 (83%) 243
60k 1.74 (94%) 1.74 (87%) 1.72 (88%) 1.70 60k 2.52 (80%) 2.52 (77%) 2.52 (60%) 2.50

Note: We calculate the value improvement from 100 simulation replications, along with the percentage of replications in which the value of
the focal method is greater than the value of the DEFAULT approach (given in parentheses).

Table App-19: Targeting Value Improvement Across Varying Sample Sizes: R-XGBoost

(a) Scenario 1: DP-Protected Covariates (b) Scenario 2: DP-Protected Outcome
Sample Size PROPOSED SPLIT-ONLY NON-HONEST Sample Size PROPOSED SPLIT-ONLY NON-HONEST
3k 40.3% (76%) 37.7% (79%) —0.2% (36%) 3k 35.7% (93%) 26.9% (82%) 18.6% (83%)
6k 51.6% (82%) 47.5% (84%) 23.8% (84%) 6k 24.2% (96%) 17.3% (68%) 14.6% (80%)
12k 27.6% (88%) 26.7% (84%) 11.7% (84%) 12k 13.8% (88%) 12.6% (92%) 7.1% (84%)
24k 11% (85%) 9.5% (80%) 4.2% (75%) 24k 7.3% (86%) 6.2% (65%) 3.1% (85%)
36k 9.0% (86%) 8.1% (78%) 2.5% (78%) 36k 5% (83%) 4.3% (80%) 2.4% (75%)
48k 8.5% (83%) 7.6% (76%) 1.4% (71%) 48k 7.6% (80%) 7.1% (77%) 2.6% (90%)
60k 7.7% (90%) 7.4% (90%) 4.8% (100%) 60k 1.5% (75%) 1.30% (69%) 0.8% (60%)

Note: We calculate the value improvement from 100 simulation replications, along with the percentage of replications in which the value of
the focal method is greater than the value of the DEFAULT approach (given in parentheses).
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Web Appendix D.5.4 Results for DR-learner with XGBoost Models

Varying Privacy Levels. Figure presents the MSE, squared bias, and variance of dif-
ferent methods across different privacy levels, where we apply DR-lerarner with XGBoost mod-
els as the DEFAULT method and the initial CATE models.

Figure App-17: Statistical Accuracy Across Varying Privacy Levels: DR-XGBoost

(a) Scenario 1: DP-Protected Covariates

Squared Bias Variance

No 50 25 167 125 10 No 50 25 167 125 10 No 50 25 167 125 10
Privacy Budget

> Default < Non—-Honest 7 Split-Only <+ Proposed
(b) Scenario 2: DP-Protected Outcome

Squared Bias Variance

1:0 o X;;//“;:/X/D

No 50 25 16.7 125 10 No 50 25 16.7 125 10 No 50 25 16.7 125 10
Privacy Budget

> Default <# Non—Honest - Split-Only < Proposed

Note: We simulate 100 replications to compute the bootstrap MSE for each individual in the holdout set. We then average the bootstrap mean
over a holdout set of 10,000 individuals for each point.

Table [App-20| reports the AUTOC values across different privacy levels. Table |App-21

presents the value improvement of different methods across various privacy levels. Overall,

the results align with the findings from the main analysis in Section

Table App-20: AUTOC Values Across Varying Privacy Levels: DR-XGBoost

(a) Scenario 1: DP-Protected Covariates (b) Scenario 2: DP-Protected Outcome
Privacy(e) PROPOSED SPLIT-ONLY NON-HONEST DEFAULT Privacy(e) PROPOSED SPLIT-ONLY NON-HONEST DEFAULT
No 2.34 (98%) 2.30 (88%) 2.31 (85%) 224 No 2.34 (98%) 2.30 (88%) 2.31 (85%) 224
50.0 2.27 (98%) 2.22 (81%) 2.24 (92%) 2.17 50.0 2.32(99%) 2.26 (85%) 2.28 (89%) 222
25.0 2.11 (98%) 2.06 (79%) 2.08 (86%) 2.01 25.0 2.31 (96%) 2.25 (77%) 2.27 (86%) 221
16.7 1.92 (97%) 1.88 (66%) 1.89 (83%) 1.86 16.7 2.26 (97%) 2.21 (84%) 2.21 (83%) 2.15
12.5 1.72 (87%) 1.67 (63%) 1.7 0(87%) 1.65 12.5 2.22 (96%) 2.14 (70%) 2.18 (82%) 211
10.0 1.51 (82%) 1.48 (65%) 1.48 (59%) 1.47 10.0 2.14 (92%) 2.05 (62%) 2.10 (84%) 2.03

Note: We calculate the value improvement from 100 simulation replications, along with the percentage of replications in which the value of
the focal method is greater than the value of the DEFAULT approach (given in parentheses).
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Table App-21: Targeting Value Improvement Across Varying Privacy Levels: DR-XGBoost

(a) Scenario 1: DP-Protected Covariates (b) Scenario 2: DP-Protected Outcome
Privacy(e) PROPOSED SPLIT-ONLY NON-HONEST Privacy(e) PROPOSED SPLIT-ONLY NON-HONEST
No 11.6% (98%) 6.6% (85%) 7.8% (82%) No 11.6% (98%) 6.6% (86%) 7.8% (83%)
50.0 13.0% (97%) 7.6% (82%) 9.7% (87%) 50.0 14.6% (96%) 7.1% (84%) 11.3% (92%)
25.0 13.4% (96%) 6.4% (79%) 8.7% (83%) 25.0 12.2% (98%) 4.8% (71%) 8.2% (82%)
16.7 11.9% (88%) 3.8% (64%) 4.8% (74%) 16.7 16.4% (99%) 9.0% (73%) 9.3% (78%)
12.5 13.3% (85%) 5.3% (67%) 3.1% (72%) 12.5 15.1% (96%) 4.5% (66%) 9.8% (74%)
10.0 14.3% (74%) 7.6% (66%) 2.5% (51%) 10.0 14.0% (85%) 5.3% (70%) 7.6% (61%)

Note: We calculate the value improvement from 100 simulation replications, along with the percentage of replications in which the value of
the focal method is greater than the value of the DEFAULT approach (given in parentheses). The results presented here are based on the use of
DR-XGBoost as the initial CATE model.

Varying Sample Sizes. Figure presents the MSE, squared bias, and variance of dif-
ferent methods across different sample sizes, where we apply DR-XGBoost method as the DE-
FAULT and the initial CATE models. Table reports the AUTOC values across differ-
ent sample sizes. Table presents the value improvement of different methods across
various sample sizes. Overall, the results align with the findings from the main analysis in

Section5.5
Figure App-18: Statistical Accuracy Across Varying Sample Sizes: DR-XGBoost
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Note: We simulate 100 replications to compute the bootstrap MSE for each individual in the holdout set. We then average the bootstrap mean
over a holdout set of 10,000 individuals for each point.
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Table App-22: AUTOC Values for Across Varying Sample Sizes: DR-XGBoost

(a) Scenario 1: DP-Protected Covariates (b) Scenario 2: DP-Protected Outcome
Sample Size PROPOSED SPLIT-ONLY NON-HONEST DEFAULT Sample Size PROPOSED SPLIT-ONLY NON-HONEST DEFAULT
3k 1.51 (80%) 1.48 (66%) 1.48 (66%) 1.47 3k 2.14 (92%) 2.05 (62%) 2.10 (84%) 2.03
6k 1.65 (90%) 1.64 (74%) 1.62 (62%) 1.61 6k 2.29 (96%) 2.25 (92%) 2.24 (80%) 2.19
12k 1.72 (100%) 1.71 (92%) 1.70 (92%) 1.67 12k 2.39 (100%) 2.35 (96%) 2.35 (100%) 228
24k 1.76 (100%) 1.75 (100%) 1.75 (100%) 171 24k 2.45 (100%) 2.43 (100%) 2.42 (100%) 2.35
36k 1.77 (100%) 1.77 (100%) 1.76 (100%) 1.72 36k 2.46 (100%) 2.45 (100%) 2.43 (100%) 2.36
48k 1.78 (100%) 1.78 (100%) 1.77 (100%) 1.72 48k 2.47 (100%) 2.46 (100%) 2.44 (100%) 237
60k 1.79 (100%) 1.79 (100%) 1.78 (100%) 1.73 60k 2.46 (100%) 2.46 (100%) 2.45 (100%) 238

Note: We calculate the value improvement from 100 simulation replications, along with the percentage of replications in which the value of
the focal method is greater than the value of the DEFAULT approach (given in parentheses). The results presented here are based on the use of
DR-XGBoost as the initial CATE model.

Table App-23: Targeting Value Improvement Across Varying Sample Sizes: DR-XGBoost

(a) Scenario 1: DP-Protected Covariates (b) Scenario 2: DP-Protected Outcome
Sample Size PROPOSED SPLIT-ONLY NON-HONEST Sample Size PROPOSED SPLIT-ONLY NON-HONEST
3k 17.5% (94%) -4.8% (44%) -11.6% (30%) 3k 13.2% (100%) 3.4% (76%) 0.8% (56%)
6k 15.7% (93%) 4.7% (70%) 0.2% (53%) 6k 11.5% (100%) 6.8% (84%) 2.3% (72%)
12k 14.2% (100%) 7.7% (92%) 1.6% (56%) 12k 8.8% (100%) 5.1% (96%) 2.4% (76%)
24k 10.9% (100%) 7.5% (95%) 1.5% (72%) 24k 7.1% (100%) 5.9% (100%) 1.2% (80%)
36k 11.2% (100%) 8.9% (100%) 2.0% (83%) 36k 5.3% (100%) 4.1% (100%) 1.7% (90%)
48k 9.4% (100%) 7.1% (100%) 1.0% (88%) 48k 4.9% (100%) 4.0% (100%) 1.2% (90%)
60k 10.0% (100%) 9.1% (100%) 1.2% (84%) 60k 4.3% (100%) 4.2% (100%) 0.5% (70%)

Note: We calculate the value improvement from 100 simulation replications, along with the percentage of replications in which the value of
the focal method is greater than the value of the DEFAULT approach (given in parentheses). The results presented here are based on the use of
DR-XGBoost as the initial CATE model.

Web Appendix E Further Details about Hillstrom Case Study

In this section, we provide the summary statistics, implementation details, and robustness

checks for the Hillstrom case study in Section

Web Appendix E.1 Summary Statistics

Table presents the summary statistics for the Hillstrom data. The definitions of the
pre-treatment covariates are:

1. Recency: The number of months since the customer’s last purchase.
2. History: The actual dollar value the customer has spent in the past year.

3. Mens: A binary variable indicating whether the customer purchased men’s merchandise in
the past year (1 = Yes).

4. Womens: A binary variable indicating whether the customer purchased women’s merchan-
dise in the past year (1 = Yes).
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5. Zip_Code: A classification of the customer’s zip code as Urban, Suburban, or Rural

6. Newbie: A binary variable indicating whether the customer was acquired in the past twelve
months (1 = Yes).

7. Channel: The channel(s) the customer purchased from in the past year.

Table App-24: Summary Statistics for Hillstrom Data

Discrete Variables

Variable N Unique Values Distributions
visit (Outcome) 42,693 2 0: 37,193, 1: 5,500
email (Treatment) 42,693 2 0: 21,306, 1: 21,387
mens 42,693 2 0: 19,166, 1: 23,527
womens 42,693 2 0: 19,260, 1: 23,433
newbie 42,693 2 0: 21,235, 1: 21,458
channel 42,693 3 Phone: 18,781, Website: 18,727, Multichannel: 5,185
zip_code 42,693 3 Suburban: 19,275, Urban 17,098, Rural: 6,320
Continuous Variables

Variable N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max
history 42,693 241.71 254.04 29.99 65.16 158.46 326.05 3345.93
newbie 42,693 0.5 0.5 0 0 1 1 1
recency 42,693 5.76 3.5 1 2 5 9 12

Web Appendix E.2 Covariate Balance Check

To assess covariate balance, we compare the distributions of each covariate for both treated and
non-treated customers. In particular, we use the standardized mean difference measure, which is
the mean difference between the treated and non-treated groups divided by the pooled stan-
dard deviation. Generally, it is considered small if the value is less than 0.20 (Cohen 2013).
Table reports the summary for the covariate balance check. Note that the standardized
mean differences are close to zero for all covariates, suggesting that the experiment is properly
randomized.

We also conduct a linear regression test to assess whether any covariate predicts the treat-
ment assignment indicator. The joint F-test indicates that the model has no predictive power
(F-stat = 0.4292, p-value = 0.9202), suggesting that randomization was successfully imple-

mented.
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Table App-25: Covariate Balance Check for Hillstrom Data

Variable Mean Diff. Pooled St. Dev. Standardized Mean Diff.
recency 0.021 3.505 0.006
history 1.803 255.307 0.007
mens —0.003 0.497 —0.007
womens 0.003 0.498 0.006
newbie 0.000 0.500 0.001
channel_Multichannel —0.002 0.327 —0.005
channel _Phone 0.000 0.496 0.000
channel_Web 0.001 0.496 0.003
zip_code_Rural 0.003 0.356 0.009
zip_code_Suburban —0.003 0.498 —0.006
zip_code_Urban 0.000 0.490 0.000

Web Appendix E.3 Implementation of Differential Privacy

We examine two scenarios for implementing differential privacy: (1) DP-protected covariates
and (2) a DP-protected outcome.

In the first scenario, we add Laplace noise to continuous covariates and apply randomized
response to discrete variables. Specifically, for the continuous variable recency, we add noise
drawn from a Laplace distribution with scale parameter o,cccney € {2,4, 6, 8,10}, which corre-
sponds to privacy budgets € € {6.0,3.0,2.0, 1.5, 1.2} under the Laplace mechanism. For the con-
tinuous variable history, we similarly apply Laplace noise with scale parameter oyistory €
{20, 40, 60, 80, 100}, which corresponds to privacy budgets ¢ € {59.2,29.6,19.7,14.8,11.8}. For
all discrete covariates, we implement the randomized response mechanism, varying the prob-
ability parameter p € {0.05,0.10,0.15,0.20,0.25}, which corresponds to privacy budgets ¢ €
{3.66,2.94,2.51,2.20, 1.95}.

In the second scenario, we protect the binary outcome variable using the same randomized

response mechanism, again varying p across the same set of values to control the privacy level.

Web Appendix E.4 Model Specification

In the main analysis, we use the R-learner with regression forest models models and five-fold
cross-fitting for the DEFAULT method and initial CATE models. We use a constant propensity
score (0.5) for Robinson’s transformation. For all regression forest models, we use 500 trees
instead of the default 2,000 trees to accelerate training, while keeping all other parameters at

their default settings in the gr £ package.
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To construct the DR score for model calibration, we set a constant propensity score (¢ =
0.5), considering that the experiment is completely randomized. As for the conditional mean
outcome models, we evaluate three candidate models: linear regression, logistic regression,
and regression forest. The data is split into two sets: 70% allocated as the training set and the

remaining 30% serving as the holdout set. The mean-squared error (MSE) metric is reported

in Table|App-26) calculated as ﬁ D leholdout set| Yi — M, (X,)]2 Linear regression is chosen as

our final model since it yields the smallest MSE.

Table App-26: MSE of Conditional Mean Outcome Models

Privacy Scenario 1: DP-Protected Covariates Scenario 2: DP-Protected Outcome
Linear Regression Logistic Regression Regression Forest Linear Regression Logistic Regression Forest
No 0.1088 0.1089 0.1099 0.1088 0.1089 0.1099
Very Low 0.1094 0.1094 0.1098 0.1118 0.1119 0.1128
Low 0.1118 0.1119 0.1123 0.1107 0.1109 0.1122
Medium 0.1092 0.1092 0.1093 0.1184 0.1184 0.1205
High 0.1155 0.1155 0.1159 0.1186 0.1186 0.1204
Very High 0.1108 0.1109 0.1114 0.1202 0.1202 0.1220

For the calibration models in the model calibration procedures, we use linear regression to
ensure simplicity and computational efficiency. We set the number of subgroups to 10 and the

maximum number of iterations to 20 for the subgroup cross-learning algorithm.

Web Appendix E.5 Small Sample Performance

We demonstrate that in small-sample settings, the PROPOSED method outperforms the SPLIT-
ONLY method. Instead of using 70% for model construction and 30% for holdout evaluation,
we now only use 10% of the data to construct models and 90% to evaluate the performance.
Table presents the RMSE across varying privacy levels. The results show that the
PROPOSED method significantly outperforms the SPLIT-ONLY method, with both improving
accuracy compared to the DEFAULT approach. Additionally, the NON-HONEST model calibra-

tion method can even degrade performance.
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Table App-27: RMSE of GATE (Multiplied by 100) Across Varying Privacy Levels: Small Samples

Privacy Scenario 1: DP-Protected Covariates Scenario 2: DP-Protected Outcome
PROPOSED SPLIT-ONLY NON-HONEST DEFAULT PROPOSED SPLIT-ONLY NON-HONEST DEFAULT
No 4.00 (100%) 4.13 (100%) 7.20 (4%) 6.88 4.00 (100%) 4.13 (100%) 7.20 (4%) 6.88
Very Low 4.02 (100%) 4.19 (100%) 6.62 (24%) 6.46 4.26 (100%) 4.38 (100%) 7.55 (16%) 7.24
Low 3.90 (100%) 4.06 (100%) 6.46 (30%) 6.33 4.66 (100%) 4.69 (100%) 8.21 (4%) 7.92
Medium 4.01 (100%) 4.09 (100%) 6.52 (16%) 6.35 5.07 (100%) 5.14 (100%) 8.75 (4%) 8.31
High 3.90 (100%) 4.07 (100%) 6.45 (20%) 6.28 5.23 (100%) 5.36 (100%) 9.06 (4%) 8.74
Very High 3.92 (100%) 4.03 (100%) 6.43 (24%) 6.26 5.21 (100%) 5.41 (100%) 9.19 (0%) 8.84

Note: We calculate the RMSE from 50 random splits, along with the percentage of replications in which the value of the focal method is greater
than the value of the DEFAULT approach (given in parentheses).

Table reports the AUTOC values across different privacy levels. Consistent with
previous findings, the PROPOSED method outperforms the SPLIT-ONLY method, with both
achieving better accuracy than the DEFAULT approach. While the NON-HONEST model cal-
ibration method also enhances treatment prioritization ability, it suffers from high predictive

error.

Table App-28: AUTOC (Multiplied by 100) Across Varying Privacy Levels: Small Samples

Privacy Scenario 1: DP-Protected Covariates Scenario 2: DP-Protected Outcome
PROPOSED SPLIT-ONLY NON-HONEST DEFAULT PROPOSED SPLIT-ONLY NON-HONEST DEFAULT
No 1.08 (96%) 1.01 (92%) 0.87 (96%) 0.70 1.08 (96%) 1.01 (92%) 0.87 (96%) 0.70
Very Low 1.00 (94%) 1.00 (94%) 0.83 (100%) 0.62 0.83 (96%) 0.84 (96%) 0.76 (100%) 0.59
Low 0.86 (96%) 0.85 (94%) 0.72 (100%) 0.54 0.63 (88%) 0.66 (76%) 0.64 (92%) 0.45
Medium 0.83 (84%) 0.76 (80%) 0.77 (98%) 0.59 0.55 (80%) 0.51 (64%) 0.50 (96%) 0.34
High 0.78 (90%) 0.74 (74%) 0.68 (84%) 0.49 0.56 (82%) 0.52 (80%) 0.53 (82%) 0.40
Very High 0.72 (90%) 0.67 (76%) 0.64 (86%) 047 0.50 (86%) 0.49 (72%) 0.45 (88%) 0.25

Note: We calculate the AUTOC values from 50 random splits, along with the percentage of replications in which the value of the focal method
is greater than the value of the DEFAULT approach (given in parentheses).

Table reports the average value improvement across different privacy levels. The
results indicate that both the PROPOSED method and the SPLIT-ONLY method consistently out-
perform the default approach, with the proposed method achieving slightly better performance
than the split-only method.
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Table App-29: Targeting Value Improvement Across Varying Privacy Levels: Small Samples

Privacy Scenario 1: DP-Protected Covariates Scenario 2: DP-Protected Outcome
PROPOSED SPLIT-ONLY NON-HONEST PROPOSED SPLIT-ONLY NON-HONEST
No 2.26% (94%) 2.22% (88%) -0.03% (56%) 3.02% (100%) 2.98% (96%) 0.29% (60%)
Very Low 2.75% (98%) 2.42% (90%) 0.29% (72%) 2.96% (100%) 2.91% (100%) 0.33% (64%)
Low 2.69% (98%) 2.43% (92%) 0.21% (66%) 3.02% (100%) 3.08% (100%) 0.13% (60%)
Medium 2.71% (100%) 2.44% (92%) 0.2% (66%) 3.27% (100%) 3.11% (94%) 0.39% (68%)
High 2.95% (98%) 2.53% (94%) 0.26% (68%) 2.89% (96%) 2.60% (92%) 0.29% (68%)
Very High 2.61% (94%) 2.43% (92%) 0.20% (64%) 3.00% (96%) 2.56% (96%) 0.36% (76%)

Note: We calculate the value improvement from 50 splits, along with the percentage of replications in which the value of the focal method is
greater than the value of the DEFAULT approach (given in parentheses). The results presented here are based on the use of R-XGBoost models
as the initial CATE model.

Web Appendix E.6 Robustness Checks of Other DEFAULT Models
Web Appendix E.6.1 Forest-based Models

We begin by considering two alternative forest-based CATE models as the DEFAULT method
and the inital CATE models for the model calibration algorithms: Causal Forest and DR-learner
with regression forests. Results for the T-learner (Kiinzel et al.|2019) are also available upon

request and show consistent patterns with the findings reported here.

1. (Causal Forest) We use the causal forest function implemented in the gr £ package with 500
trees and other default parameters. Note that we choose 500 trees instead the default 2,000

trees to accelerate the model training process.

2. (DR-learner) We construct both the DR score and the CATE model using regression forests.
To speed up training, we reduce the number of trees from the default 2,000 to 500, while

keeping all other parameters at their default settings in the gr £ package.

Table reports the RMSE for the two CATE models. The results indicate that (i) the
PROPOSED method significantly outperforms all other methods, (ii) the SPLIT-ONLY method
also improves upon the DEFAULT method, while (iii) the NON-HONEST model calibration
method fail to enhance predictive performance.

Table reports the AUTOC values (multiplied by 100) for different methods across
various privacy levels. Consistent with the main findings in Section [f| of the paper, the PRO-
POSED method outperforms all other methods, and all the model calibration methods outper-

form the DEFAULT approach.
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Table App-30: RMSE of GATE (Multiplied by 100) Across Varying Privacy Levels

(a) Causal Forest

Privacy Scenario 1: DP-Protected Covariates Scenario 2: DP-Protected Outcome
PROPOSED SPLIT-ONLY NON-HONEST DEFAULT PROPOSED SPLIT-ONLY NON-HONEST DEFAULT
No 2.56 (100%) 2.54 (96%) 3.54 (44%) 341 2.56 (100%) 2.54 (96%) 3.54 (44%) 341
Very Low 2.30 (96%) 2.42 (100%) 3.27 (20%) 3.13 2.68 (100%) 2.62 (96%) 3.9 (28%) 3.73
Low 2.35 (98%) 2.36 (94%) 3.32 (12%) 3.16 2.41 (96%) 2.46 (96%) 3.67 (32%) 3.56
Medium 2.37 (98%) 2.32 (100%) 3.39 (28%) 3.23 2.56 (100%) 2.62 (96%) 3.95 (28%) 3.89
High 2.18 (100%) 2.33 (92%) 3.09 (28%) 297 2.49 (100%) 2.65 (100%) 4.29 (44%) 429
Very High 2.27 (100%) 2.26 (100%) 3.37 (12%) 3.13 2.78 (100%) 2.73 (100%) 4.39 (36%) 433
(b) DR-learner with Regression Forests
. Scenario 1: DP-Protected Covariates Scenario 2: DP-Protected Outcome
Privacy
PROPOSED SPLIT-ONLY NON-HONEST DEFAULT PROPOSED SPLIT-ONLY NON-HONEST DEFAULT
No 3.96 (100%) 4.05 (100%) 7.23 (38%) 7.23 3.96 (100%) 4.05 (100%) 7.23 (38%) 7.23
Very Low 3.89 (100%) 3.93 (100%) 7.16 (36%) 7.13 4.05 (100%) 4.17 (100%) 7.63 (54%) 7.61
Low 3.59 (100%) 3.66 (100%) 5.88 (40%) 5.85 4.46 (100%) 4.49 (100%) 8.17 (29%) 8.11
Medium 3.41 (100%) 3.42 (100%) 5.51 (24%) 5.47 4.82 (100%) 4.81 (100%) 8.72 (42%) 8.72
High 3.51 (100%) 3.56 (100%) 5.61 (64%) 5.63 4.73 (100%) 4.75 (100%) 8.73 (50%) 8.70
Very High 3.57 (100%) 3.59 (100%) 5.65 (24%) 5.58 5.24 (100%) 5.33 (100%) 9.52 (42%) 9.50

Note: We calculate the RMSE from 50 random splits, along with the percentage of replications in which the value of the focal method is greater
than the value of the DEFAULT approach (given in parentheses).

Table App-31: AUTOC Values (Multiplied by 100) Across Varying Privacy Levels

(a) Causal Forest

Privacy Scenario 1: DP-Protected Covariates Scenario 2: DP-Protected Outcome
PROPOSED SPLIT-ONLY NON-HONEST DEFAULT PROPOSED SPLIT-ONLY NON-HONEST DEFAULT
No 1.71 (60%) 1.68 (68%) 1.57 (48%) 1.59 1.71 (60%) 1.68 (68%) 1.57 (48%) 1.59
Very Low 1.55 (96%) 1.52 (84%) 1.4 (96%) 1.26 1.41 (76%) 1.43 (68%) 1.29 (60%) 1.26
Low 1.30 (100%) 1.32 (88%) 1.22 (96%) 1.03 1.56 (68%) 1.55 (72%) 1.45 (64%) 143
Medium 1.30 (96%) 1.21 (80%) 1.17 (96%) 0.97 1.27 (88%) 1.27 (84%) 1.18 (92%) 1.07
High 1.36 (92%) 1.29 (92%) 1.24 (98%) 0.99 1.26 (96%) 1.25 (96%) 1.02 (96%) 0.89
Very High 1.11 (100%) 1.07 (88%) 1.09 (94%) 0.89 1.06 (88%) 1.02 (78%) 1.00 (82%) 0.85
(b) DR-learner with Regression Forests
. Scenario 1: DP-Protected Covariates Scenario 2: DP-Protected Outcome
Privacy
PROPOSED SPLIT-ONLY NON-HONEST DEFAULT PROPOSED SPLIT-ONLY NON-HONEST DEFAULT
No 1.26 (72%) 1.27 (62%) 1.12 (62%) 1.11 1.26 (72%) 1.27 (62%) 1.12 (62%) 1.11
Very Low 1.23 (64%) 1.26 (72%) 1.14 (60%) 1.13 1.24 (76%) 1.25 (80%) 1.05 (58%) 1.03
Low 1.02 (88%) 1.03 (88%) 0.75 (76%) 0.71 1.06 (72%) 1.06 (62%) 0.96 (66%) 0.95
Medium 1.11 (82%) 1.12 (72%) 0.96 (84%) 0.90 0.86 (78%) 0.88 (84%) 0.75 (88%) 0.72
High 0.97 (88%) 0.98 (90%) 0.72 (84%) 0.63 0.96 (68%) 0.96 (62%) 0.91 (76%) 0.85
Very High 0.85 (78%) 0.86 (76%) 0.70 (66%) 0.61 0.66 (70%) 0.66 (70%) 0.57 (68%) 0.51

Note: We calculate the AUTOC values from 50 random splits, along with the percentage of replications in which the value of the focal method
is greater than the value of the DEFAULT approach (given in parentheses).

Table reports the average value improvement across different privacy levels. The
results indicate that both the PROPOSED method and the SPLIT-ONLY method consistently out-
perform the default approach, with the proposed method achieving slightly better performance
than the split-only method.
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Table App-32: Targeting Value Improvement Across Varying Privacy Levels

(a) Causal Forest

Privacy Scenario 1: DP-Protected Covariates Scenario 2: DP-Protected Outcome
PROPOSED SPLIT-ONLY NON-HONEST PROPOSED SPLIT-ONLY NON-HONEST
No 1.79% (96%) 1.67% (92%) 0.14% (68%) 1.79% (96%) 1.67% (92%) 0.14% (68%)
Very Low 1.4% (100%) 1.35% (96%) 0.11% (60%) 1.77% (92%) 1.65% (88%) 0.24% (60%)
Low 0.87% (84%) 0.90% (84%) -0.13% (44%) 1.76% (84%) 1.59% (88%) -0.04% (56%)
Medium 1.31% (96%) 1.54% (96%) -0.11% (44%) 1.99% (92%) 2.19% (100%) 0.08% (48%)
High 1.01% (92%) 0.98% (92%) -0.15% (28%) 2.63% (92%) 2.53% (96%) -0.08% (36%)
Very High 1.40% (96%) 1.30% (92%) -0.15% (52%) 2.85% (100%) 2.75% (100%) 0.38% (64%)
(b) DR-learner with Regression Forests
. Scenario 1: DP-Protected Covariates Scenario 2: DP-Protected Outcome
Privacy
PROPOSED SPLIT-ONLY NON-HONEST PROPOSED SPLIT-ONLY NON-HONEST
No 0.97% (96%) 0.97% (96%) -0.01% (42%) 0.97% (96%) 0.97% (96%) -0.01% (42%)
Very Low 2.54% (94%) 2.29% (92%) 0.19% (56%) 1.30% (94%) 1.32% (96%) -0.02% (42%)
Low 2.44% (96%) 2.39% (100%) 0.01% (54%) 1.44% (100%) 1.41% (96%) -0.03% (46%)
Medium 2.57% (92%) 2.34% (92%) 0.34% (76%) 1.57% (96%) 1.55% (94%) -0.02% (50%)
High 3.13% (100%) 2.95% (94%) 0.16% (56%) 1.51% (92%) 1.50% (90%) 0.02% (50%)
Very High 3.13% (100%) 3.07% (96%) 0.19% (64%) 2.10% (96%) 2.07% (96%) -0.11% (38%)

Note: We calculate the value improvement from 50 splits, along with the percentage of replications in which the value of the focal method is
greater than the value of the DEFAULT approach (given in parentheses).

Web Appendix E.6.2 XGBoost-based Models

Next, we consider two additional boosting-based CATE models: the R-learner and the DR-
learner. Results for the T-learner are available upon request and are consistent with the find-
ings reported here. To fine-tune the hyperparameters in XGBoost models, we perform a single
train-holdout split under the non-privacy setting. For conditional mean outcome models, we
select parameters that minimize mean squared prediction error, while for the CATE model in
R-learner and DR-learner, we choose parameters that maximize the AUTOC value. The search
ranges for key hyperparameters include: learning rate n € {0.20,0.40,0.60, 0.80, 1.00}, maxi-
mum depth in each tree {2, 4, 6, 8, 10}, and the maximum number of iterations {10, 20, 30, 40, 50}.

The optimal hyperparameters are as follows:

1. (R-learner) Conditional mean outcome model: n = 0.20, maximum tree depth: 2, the max-
imum number of iterations: 40; CATE model: = 0.20, maximum tree depth: 2, the maxi-

mum number of iterations: 10.

2. (DR-learner): Conditional mean outcome model for the treatment group: 7 = 0.20, max-
imum tree depth: 2, the maximum number of iterations: 20; Conditional mean outcome

model for the control group: 7 = 0.20, maximum tree depth: 2, the maximum number of

App-43



iterations: 10; CATE model: = 0.20, maximum tree depth: 2, the maximum number of

iterations: 10.

Table[App-33|reports the RMSE for the two CATE models. Table[App-34|reports the AUTOC
values (multiplied by 100) for different methods across various privacy levels. The findings are

consistent with the main results in Section |6

Table App-33: RMSE of GATE (Multiplied by 100) Across Varying Privacy Levels

(a) R-XGBoost Model

Privacy Scenario 1: DP-Protected Covariates Scenario 2: DP-Protected Outcome
PROPOSED SPLIT-ONLY NON-HONEST DEFAULT PROPOSED SPLIT-ONLY NON-HONEST DEFAULT
No 2.16 (100%) 2.18 (100%) 2.08 (100%) 4.82 2.16 (100%) 2.18 (100%) 2.08 (100%) 4.82
Very Low 2.16 (100%) 2.18 (100%) 2.08 (100%) 5.02 2.16 (100%) 2.26 (100%) 2.34 (100%) 4.85
Low 2.16 (100%) 2.26 (100%) 2.34 (100%) 4.85 2.18 (98%) 2.39 (96%) 2.26 (100%) 4.88
Medium 2.18 (96%) 2.39 (96%) 2.26 (100%) 478 2.05 (100%) 2.25 (100%) 2.45 (100%) 4.85
High 2.05 (100%) 2.25 (100%) 2.45 (100%) 4.65 2.17 (100%) 2.33 (100%) 2.38 (100%) 4.88
Very High 2.17 (100%) 2.33 (100%) 2.38 (100%) 478 2.29 (100%) 2.32 (100%) 2.51 (100%) 4.92
(b) DR-learners with XGBoost Models
. Scenario 1: DP-Protected Covariates Scenario 2: DP-Protected Outcome
Privacy
PROPOSED SPLIT-ONLY NON-HONEST DEFAULT PROPOSED SPLIT-ONLY NON-HONEST DEFAULT
No 2.10 (100%) 2.14 (100%) 2.03 (100%) 5.09 2.10 (100%) 2.14 (100%) 2.03 (100%) 5.09
Very Low 2.34 (100%) 2.16 (100%) 2.26 (100%) 5.27 2.19 (100%) 2.16 (100%) 2.28 (100%) 5.09
Low 1.89 (100%) 2.01 (100%) 1.97 (100%) 498 2.11 (100%) 2.21 (100%) 2.23 (100%) 4.66
Medium 2.16 (100%) 2.07 (100%) 2.15 (100%) 5.25 2.09 (100%) 2.13 (100%) 2.37 (100%) 483
High 1.98 (100%) 2.08 (100%) 2.09 (100%) 5.30 2.12 (98%) 2.42 (100%) 2.54 (100%) 4.56
Very High 2.06 (100%) 2.04 (100%) 2.12 (100%) 5.24 2.09 (100%) 2.28 (96%) 2.59 (96%) 4.86

Note: We calculate the RMSE from 50 random splits, along with the percentage of replications in which the value of the focal method is greater
than the value of the DEFAULT approach (given in parentheses).

Table App-34: AUTOC Values (Multiplied by 100) Across Varying Privacy Levels

(a) R-learners with XGBoost Models

Privacy Scenario 1: DP-Protected Covariates Scenario 2: DP-Protected Outcome
PROPOSED SPLIT-ONLY NON-HONEST DEFAULT PROPOSED SPLIT-ONLY NON-HONEST DEFAULT
No 1.78 (72%) 1.79 (84%) 1.78 (80%) 1.55 1.78 (72%) 1.79 (84%) 1.78 (80%) 1.55
Very Low 1.81 (96%) 1.83 (96%) 1.78 (96%) 1.45 1.67 (74%) 1.68 (76%) 1.61 (90%) 1.58
Low 1.71 (84%) 1.74 (88%) 1.77 (96%) 1.43 1.77 (72%) 1.75 (60%) 1.78 (80%) 1.61
Medium 1.57 (72%) 1.61 (80%) 1.57 (76%) 1.42 1.68 (68%) 1.67 (76%) 1.64 (68%) 1.55
High 1.55 (68%) 1.60 (76%) 1.62 (76%) 141 1.61 (64%) 1.65 (60%) 1.69 (68%) 1.56
Very High 1.54 (67%) 1.60 (75%) 1.58 (83%) 1.39 1.62 (76%) 1.67 (68%) 1.66 (76%) 1.49
(b) DR-learners with XGBoost Models
. Scenario 1: DP-Protected Covariates Scenario 2: DP-Protected Outcome
Privacy
PROPOSED SPLIT-ONLY NON-HONEST DEFAULT PROPOSED SPLIT-ONLY NON-HONEST DEFAULT
No 1.80(80%) 1.78 (84%) 1.78 (92%) 1.49 1.80(80%) 1.78 (84%) 1.78 (92%) 1.49
Very Low 1.72 (86%) 1.74 (92%) 1.66 (82%) 1.49 1.71 (72%) 1.69 (74%) 1.68 (76%) 1.58
Low 1.69 (76%) 1.67 (64%) 1.68 (72%) 1.46 1.82 (84%) 1.72 (68%) 1.71 (76%) 1.51
Medium 1.68 (88%) 1.68 (82%) 1.64 (96%) 147 1.69 (78%) 1.61 (72%) 1.57 (72%) 1.46
High 1.53 (84%) 1.55 (88%) 1.49 (88%) 1.35 1.67 (76%) 1.64 (78%) 1.63 (72%) 1.53
Very High 1.54 (86%) 1.52 (76%) 1.45 (84%) 1.30 1.69 (74%) 1.64 (62%) 1.60 (72%) 1.50

Note: We calculate the AUTOC values from 50 random splits, along with the percentage of replications in which the value of the focal method
is greater than the value of the DEFAULT approach (given in parentheses).

Table presents the average value improvement across different methods. Overall,

the calibrated models do not produce significant gains over the DEFAULT model. This is be-
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cause all models, including the DEFAULT and the various calibrated versions, predict positive
treatment effects for over 99.9% of customers. As a result, when targeting is based solely on
whether the predicted CATE is positive, all models recommend targeting nearly the entire cus-
tomer base. Nevertheless, the substantial improvements in RMSE and AUTOC highlight the
value of honest model calibrations. This benefit becomes particularly important in practical
applications where targeting is constrained—such as when firms can only reach a subset of
customers due to budget limitations or strategic priorities.

Table App-35: Targeting Value Improvement Across Varying Privacy Levels

(a) R-learner with XGBoost Models

Privacy Scenario 1: DP-Protected Covariates Scenario 2: DP-Protected Outcome
PROPOSED SPLIT-ONLY NON-HONEST PROPOSED SPLIT-ONLY NON-HONEST
No 0.01% (54%) 0.01% (54%) 0.00% (52%) 0.01% (54%) 0.01% (54%) 0.00% (52%)
Very Low 0.18% (52%) -0.1% (56%) 0.05% (56%) -0.02% (48%) -0.01% (46%) 0.00% (56%)
Low -0.06% (50%) -0.06% (44%) -0.08% (48%) -0.02% (50%) -0.01% (48%) -0.01% (48%)
Medium -0.03% (44%) 0.05% (56%) 0.10% (50%) 0.02% (60%) -0.01% (56%) 0.01% (50%)
High -0.14% (46%) -0.35% (43%) -0.01% (52%) 0.01% (58%) -0.01% (64%) -0.01% (52%)
Very High 0.11% (56%) -0.10% (44%) -0.01% (60%) -0.01% (48%) -0.03% (56%) -0.01% (60%)
(b) DR-learner with XGBoost Models
. Scenario 1: DP-Protected Covariates Scenario 2: DP-Protected Outcome
Privacy
PROPOSED SPLIT-ONLY NON-HONEST PROPOSED SPLIT-ONLY NON-HONEST
No 0.03% (60%) 0.02% (54%) 0.01% (58%) 0.03% (60%) 0.02% (54%) 0.01% (58%)
Very Low 0.02% (60%) 0.01% (64%) -0.01% (62%) -0.02% (46%) -0.02% (46%) -0.01% (52%)
Low 0.00% (58%) 0.00% (54%) 0.01% (52%) 0.01% (58%) 0.01% (60%) 0.01% (54%)
Medium 0.01% (52%) -0.02% (44%) 0.00% (54%) 0/02% (64%) 0.00% (50%) 0.02% (52%)
High -0.01% (48%) -0.02% (42%) 0.01% (58%) -0.01% (64%) -0.02% (56%) 0.00% (48%)
Very High 0.00% (68%) 0.01% (52%) -0.02% (64%) 0.03% (58%) 0.02% (56%) 0.00% (56%)

Note: We calculate the value improvement from 50 splits, along with the percentage of replications in which the value of the focal method is
greater than the value of the DEFAULT approach (given in parentheses).

Web Appendix F Further Details about Starbucks Case Study

In this section, we provide the summary statistics, implementation details, and robustness

checks for the Starbucks case study in Section

Web Appendix F.1 Summary Statistics

Table [App-36|provides summary statistics for the Starbucks data. Note that there are five cate-

gorical and two continuous pre-treatment covariates.
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Table App-36: Summary Statistics for Starbucks Data

Discrete Variables

Variable N Unique Values Distribution
Purchase (Outcome) 126,184 2 0: 124,664, 1: 1,520
Promotion (Treatment) 126,184 2 0: 63,072, 1:63,112
Vi 126,184 4 0: 15,846, 1:47,410, 2:47,134, 3:15,794
V4 126,184 2 1: 40,379, 2: 85,805
V5 126,184 4 1: 23,179, 2:46,597, 3:48,643, 4:7,765
V6 126,184 4 1: 31,435, 2:31,420, 3:3,1651, 4:31,678
V7 126,184 2 1: 37,545, 2: 88,639
Continuous Variables
Variable N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max
V2 126,184 29.98 5.00 7.10 26.596 29.98 33.354 55.108
V3 126,184 0.00 1.00 —1.69 —-0.91 —0.04 0.83 1.69

Web Appendix F.2 Covariate Balance Check
Table reports the summary statistics for the covariate balance check. The result sug-

gests that the experiment is properly randomized as the standardized mean differences of all

the covariates are close to zero.

Table App-37: Covariate Balance Check for Starbucks Data

Variable Mean Diff. Pooled St. Dev. Standardized Mean Diff.

V1i=0 —0.002 0.331 —0.005
Vi=1 —0.003 0.484 —0.006
Vi=2 0.002 0.484 0.004
V1i=3 0.003 0.331 0.009
V2 —0.011 5.001 —0.002
V3 0.012 1.000 0.012
Vi=1 —0.001 0.466 —0.002
V4i=2 0.001 0.466 0.002
V5=1 0.003 0.387 0.007
V5 =2 —0.001 0.483 —0.001
V5=3 —0.001 0.487 —0.001
V5=4 —0.002 0.240 —0.006
Ve =1 0.000 0.433 0.000
V6 =2 0.000 0.432 0.000
V6 =3 0.001 0.433 0.001
V6 =4 —0.001 0.434 —0.002
V7 =1 —0.001 0.457 —0.002
V7 =2 0.001 0.457 0.002

We also conduct a linear regression test to assess whether any covariate predicts the treat-
ment assignment indicator. The joint F-test indicates that the model has no predictive power
(F-stat = 0.8966, p-value = 0.5560), suggesting that randomization was successfully imple-

mented.
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Web Appendix F.3 Implementation of Differential Privacy

In the scenario when the outcome variable is protected by DP, we apply the randomized re-
sponse mechanism, setting p to values in the set {0.05,0.10,0.15,0.20, 0.25}, which corresponds
to € € {3.66,2.94,2.51,2.20,1.95}. In the scenario when covaraites are protected by DP, we de-
ploy the Laplace mechanism for the V2 variable, setting o+, to values in the set {5, 10, 15, 20, 25}
(which corresponds to ¢ € {8.40,4.20,2.80,2.10,1.68}), and for the V3 variable, setting oy
to values in the set {1,2,3,4,5} (which corresponds to ¢ € {3.50,1.75,1.17,0.88,0.70}). For
all discrete variables, we implement the randomized response mechanism, with p in the set

{0.08,0.16,0.24,0.32,0.40} (which corresponds to € € {3.18,2.44,1.94, 1.65, 1.39}).

Web Appendix F.4 Model Specification

In the main analysis, we use the R-learner with regression forest models models and five-fold
cross-fitting for the DEFAULT method and initial CATE models. We use a constant propensity
score (0.5) for Robinson’s transformation. For all regression forest models, we use 500 trees
instead of the default 2,000 trees to accelerate training, while keeping all other parameters at
their default settings in the gr £ package.

To construct the DR score for model calibration, we set a constant propensity score (¢ =
0.5), considering that the experiment is completely randomized. As for the conditional mean
outcome models, we evaluate three candidate models: linear regression, logistic regression,
and regression forest. The data is split into two sets: 70% allocated as the training set and the

remaining 30% serving as the holdout set. The mean-squared error (MSE) metric is reported

1 A~ < 2 . . .
= D choldout set Yi — Mw, (X)), Linear regression is chosen as

oldout

in Table |App-38, calculated as -

our final model since it yields the smallest MSE.

Table App-38: MSE of Conditional Mean Outcome Models

Privacy Scenario 1: DP-Protected Covariates Scenario 2: DP-Protected Outcome
Linear Regression Logistic Regression Regression Forest Linear Regression Logistic Regression Forest
No 0.0119 0.0119 0.0119 0.0119 0.0119 0.0119
Very Low 0.0119 0.0119 0.0119 0.0360 0.0360 0.0360
Low 0.0114 0.0114 0.0114 0.0559 0.0559 0.0560
Medium 0.0123 0.0123 0.0123 0.0766 0.0766 0.0768
High 0.0118 0.0118 0.0118 0.0981 0.0981 0.0982
Very High 0.0117 0.0117 0.0117 0.1160 0.1160 0.1164
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For the calibration models in the model calibration procedures, we use linear regression to
ensure simplicity and computational efficiency. We set the number of subgroups to 5 and the

maximum number of iterations to 5 for the subgroup cross-learning algorithm.

Web Appendix F.5 Small Sample Performance

Here, we demonstrate that in small-sample settings, the PROPOSED method outperforms the
SPLIT-ONLY method. Instead of using 70% for model construction and 30% for holdout evalu-
ation, we only use 10% of the data to construct models and 90% to evaluate the performance.
Table presents the RMSE across varying privacy levels. The results show that the
PROPOSED method significantly outperforms the SPLIT-ONLY method, with both improving
accuracy compared to the DEFAULT approach. Additionally, the NON-HONEST model calibra-
tion method can even degrade performance, underscoring the importance of our PROPOSED

method in small-sample settings.

Table App-39: RMSE of GATE (Multiplied by 100) Across Varying Privacy Levels

. Scenario 1: DP-Protected Covariates Scenario 2: DP-Protected Outcome
Privacy
PROPOSED SPLIT-ONLY NON-HONEST DEFAULT PROPOSED SPLIT-ONLY NON-HONEST DEFAULT
No 1.00 (100%) 1.03 (100%) 1.72 (20%) 1.70 1.00 (100%) 1.03 (100%) 1.72 (20%) 1.70
Very Low 0.95 (100%) 0.98 (100%) 1.67 (8%) 1.60 1.86 (100%) 1.88 (100%) 3.15 (16%) 3.12
Low 0.98 (100%) 0.99 (100%) 1.67 (16%) 1.62 2.45 (100%) 2.51 (100%) 4.12 (28%) 4.06
Medium 1.01 (100%) 1.05 (100%) 1.71 (16%) 1.64 2.94 (100%) 2.98 (100%) 4.86 (12%) 4.78
High 1.03 (100%) 1.04 (100%) 1.72 (4%) 1.65 3.29 (100%) 3.45 (100%) 5.42 (4%) 5.35
Very High 1.05 (100%) 1.06 (100%) 1.70 (4%) 1.63 3.60 (100%) 3.69 (100%) 6.00 (0%) 591

Note: We calculate the RMSE from 50 random splits, along with the percentage of replications in which the value of the focal method is greater
than the value of the DEFAULT approach (given in parentheses).

Table reports the AUTOC values across different privacy levels. Consistent with
previous findings, the PROPOSED method outperforms the SPLIT-ONLY method, with both
achieving better accuracy than the DEFAULT approach. While the NON-HONEST model cal-
ibration method also enhances treatment prioritization ability, it suffers from higher predictive
error. Table[App-41|reports the average value improvement across different privacy levels. The
results indicate that both the PROPOSED method and the SPLIT-ONLY method consistently out-
perform the default approach, with the proposed method achieving slightly better performance
than the split-only method.
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Table App-40: AUTOC (Multiplied by 100) Across Varying Privacy Levels: Small Sample

Privacy Scenario 1: DP-Protected Covariates Scenario 2: DP-Protected Outcome
PROPOSED SPLIT-ONLY NON-HONEST DEFAULT PROPOSED SPLIT-ONLY NON-HONEST DEFAULT
No 0.24 (92%) 0.26 (96%) 0.24 (100%) 0.18 0.24 (92%) 0.26 (96%) 0.24 (100%) 0.18
Very Low 0.27 (92%) 0.23 (76%) 0.25 (88%) 0.18 0.14 (92%) 0.16 (88%) 0.12 (92%) 0.08
Low 0.19 (84%) 0.15 (84%) 0.15 (76%) 0.14 0.12 (72%) 0.09 (56%) 0.10 (92%) 0.07
Medium 0.15 (88%) 0.13 (68%) 0.12 (76%) 0.11 0.10 (72%) 0.09 (68%) 0.08 (84%) 0.04
High 0.12 (80%) 0.10 (68%) 0.11 (78%) 0.07 0.07 (74%) 0.03 (60%) 0.05 (84%) 0.05
Very High 0.08 (72%) 0.08 (72%) 0.07 (86%) 0.05 0.08 (84%) 0.07 (72%) 0.07 (82%) 0.04

Note: We calculate the AUTOC values from 50 random splits, along with the percentage of replications in which the value of the focal method
is greater than the value of the DEFAULT approach (given in parentheses).

Table App-41: Targeting Value Improvement Across Varying Privacy Levels: Small Sample

. Scenario 1: DP-Protected Covariates Scenario 2: DP-Protected Outcome
Privacy
PROPOSED SPLIT-ONLY NON-HONEST PROPOSED SPLIT-ONLY NON-HONEST
No 5.24% (100%) 5.02% (92%) 1.75% (92%) 5.24% (100%) 5.02% (92%) 1.75% (92%)
Very Low 4.94% (100%) 4.81% (100%) 2.06% (96%) 4.92% (96%) 4.69% (88%) 1.75% (88%)
Low 4.67% (100%) 4.56% (96%) 1.22% (72%) 4.30% (84%) 3.93% (76%) 1.01% (64%)
Medium 4.80% (100%) 4.42% (100%) 1.13% (72%) 3.98% (76%) 3.05% (80%) 0.96% (72%)
High 6.27% (100%) 5.40% (100%) 0.62% (60%) 3.21% (78%) 2.79% (68%) 0.66% (68%)
Very High 4.89% (100%) 3.65% (88%) -0.11% (52%) 3.08% (80%) 2.33% (74%) 1.01% (74%)

Note: We calculate the value improvement from 50 splits, along with the percentage of replications in which the value of the focal method
is greater than the value of the DEFAULT approach (given in parentheses). The results presented here are based on the use of R-learner with
regression forests as the initial CATE model.

Web Appendix F.6 Robustness Checks of Other CATE Models
Web Appendix F.6.1 Forest-based Models

We consider three alternative forest-based CATE models as the DEFAULT method and the inital
CATE models: Causal Forest and DR-learner with regression forests. Results for the T-learner

are also available upon request and show consistent patterns with the findings reported here.

1. (Causal Forest) We use the causal forest function implemented in the gr £ package with 500
trees and other default parameters. Note that we choose 500 trees instead the default 2,000

trees to accelerate the model training process.

2. (DR-learner) We construct both the DR score and the CATE model using regression forests.
To speed up training, we reduce the number of trees from the default 2,000 to 500, while

keeping all other parameters at their default settings in the gr £ package.

Table reports the RMSE for the two CATE models. The results indicate that (i) the

PROPOSED method significantly outperforms all other methods, (ii) the SPLIT-ONLY method
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also improves upon the DEFAULT method, while (iii) the NON-HONEST model calibration
method fail to reduce RMSE.

Table App-42: RMSE of GATE (Multiplied by 100) Across Varying Privacy Levels

(a) Causal Forest

Privacy Scenario 1: DP-Protected Covariates Scenario 2: DP-Protected Outcome
PROPOSED SPLIT-ONLY NON-HONEST DEFAULT PROPOSED SPLIT-ONLY NON-HONEST DEFAULT
No 0.46 (96%) 0.48 (88%) 0.76 (36%) 0.75 0.46 (96%) 0.48 (88%) 0.76 (36%) 0.75
Very Low 0.44 (100%) 0.44 (100%) 0.78 (24%) 0.74 0.72 (100%) 0.75 (100%) 1.37 (28%) 1.35
Low 0.42 (100%) 0.44 (100%) 0.76 (28%) 0.72 0.99 (100%) 1.00 (100%) 1.79 (52%) 1.79
Medium 0.44 (100%) 0.44 (100%) 0.78 (36%) 0.75 1.23 (100%) 1.26 (100%) 2.15 (48%) 2.14
High 0.45 (100%) 0.46 (100%) 0.78 (20%) 0.75 1.42 (100%) 1.44 (100%) 2.42 (52%) 241
Very High 0.44 (100%) 0.45 (100%) 0.78 (16%) 0.73 1.55 (100%) 1.57 (100%) 2.63 (48%) 2.63
(b) DR-learner with Regression Forests
. Scenario 1: DP-Protected Covariates Scenario 2: DP-Protected Outcome
Privacy
PROPOSED SPLIT-ONLY NON-HONEST DEFAULT PROPOSED SPLIT-ONLY NON-HONEST DEFAULT
No 0.38 (100%) 0.38 (100%) 0.7 (68%) 0.69 0.38 (100%) 0.38 (100%) 0.7 (68%) 0.69
Very Low 0.82 (100%) 0.83 (100%) 1.57 (32%) 1.56 0.70 (100%) 0.71 (100%) 1.31 (70%) 1.31
Low 0.87 (100%) 0.88 (100%) 1.6 (20%) 1.59 0.93 (100%) 0.93 (100%) 1.65 (84%) 1.65
Medium 0.95 (100%) 0.94 (100%) 1.67 (32%) 1.66 1.07 (100%) 1.07 (100%) 1.9 (74%) 1.89
High 0.89 (100%) 0.91 (100%) 1.6 (52%) 1.60 1.22 (100%) 1.22 (100%) 2.13 (72%) 2.12
Very High 0.92 (100%) 0.92 (100%) 1.57 (40%) 157 1.36 (100%) 1.37 (100%) 2.36 (76%) 2.36

Note: We calculate the RMSE from 50 random splits, along with the percentage of replications in which the value of the focal method is greater
than the value of the DEFAULT approach (given in parentheses).

Table reports the AUTOC values (multiplied by 100) for different methods across
various privacy levels. Consistent with the main findings in Section [f] of the paper, the PRO-
POSED method outperforms all other methods, and all the model calibration methods outper-
form the DEFAULT approach.

Table App-43: AUTOC Values (Multiplied by 100) Across Varying Privacy Levels

(a) Causal Forest

Privacy Scenario 1: DP-Protected Covariates Scenario 2: DP-Protected Outcome
PROPOSED SPLIT-ONLY NON-HONEST DEFAULT PROPOSED SPLIT-ONLY NON-HONEST DEFAULT
No 0.53 (72%) 0.53 (72%) 0.51 (72%) 0.50 0.53 (72%) 0.53 (72%) 0.51 (72%) 0.50
Very Low 0.51 (100%) 0.50 (100%) 0.43 (96%) 0.41 0.33 (92%) 0.33 (96%) 0.30 (96%) 0.26
Low 0.43 (100%) 0.42 (96%) 0.38 (88%) 0.35 0.20 (88%) 0.21 (86%) 0.18 (85%) 0.14
Medium 0.34 (96%) 0.33 (100%) 0.31 (92%) 0.28 0.17 (88%) 0.18 (92%) 0.16 (93%) 0.11
High 0.28 (96%) 0.28 (92%) 0.25 (96%) 0.21 0.14 (82%) 0.14 (76%) 0.12 (86%) 0.08
Very High 0.24 (90%) 0.23 (92%) 0.22 (92%) 0.18 0.14 (88%) 0.14 (80%) 0.12 (82%) 0.09
(b) DR-learner with Regression Forests
. Scenario 1: DP-Protected Covariates Scenario 2: DP-Protected Outcome
Privacy
PROPOSED SPLIT-ONLY NON-HONEST DEFAULT PROPOSED SPLIT-ONLY NON-HONEST DEFAULT
No 0.44 (84%) 0.44 (88%) 0.39 (68%) 0.38 0.44 (84%) 0.44 (88%) 0.39 (68%) 0.38
Very Low 0.39 (80%) 0.4 (80%) 0.34 (88%) 0.33 0.22 (78%) 0.23 (72%) 0.19 (96%) 0.16
Low 0.3 (76%) 0.3 (68%) 0.26 (96%) 0.24 0.12 (76%) 0.14 (84%) 0.10 (92%) 0.07
Medium 0.19 (76%) 0.21 (84%) 0.16 (92%) 0.14 0.15 (84%) 0.17 (80%) 0.13 (86%) 0.10
High 0.2 (80%) 0.2 (76%) 0.19 (100%) 0.16 0.11 (82%) 0.11 (76%) 0.08 (76%) 0.06
Very High 0.15 (60%) 0.16 (64%) 0.15 (100%) 0.12 0.06 (74%) 0.04 (72%) 0.04 (86%) 0.01

Note: We calculate the AUTOC values from 50 random splits, along with the percentage of replications in which the value of the focal method
is greater than the value of the DEFAULT approach (given in parentheses).
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Table reports the average value improvement across different privacy levels. The
results indicate that both the PROPOSED method and the SPLIT-ONLY method consistently out-
perform the DEFAULT approach.

Table App-44: Value Improvement Across Varying Privacy Levels

(a) Causal Forest

Privacy Scenario 1: DP-Protected Covariates Scenario 2: DP-Protected Outcome
PROPOSED SPLIT-ONLY NON-HONEST PROPOSED SPLIT-ONLY NON-HONEST
No 1.84% (92%) 1.62% (92%) 0.30% (64%) 1.84% (92%) 1.62% (92%) 0.30% (64%)
Very Low 3.18% (92%) 3.39% (92%) 0.5% (72%) 5.55% (100%) 5.67% (100%) 1.22% (84%)
Low 3.12% (92%) 3.49% (88%) 0.02% (44%) 7.65% (100%) 8.43% (100%) 2.02% (92%)
Medium 3.9% (92%) 3.36% (92%) -0.55% (40%) 6.52% (100%) 7.17% (100%) 1.74% (84%)
High 3.73% (96%) 3.75% (100%) -0.77% (36%) 6.67% (96%) 7.31% (92%) 1.74% (86%)
Very High 4.21% (96%) 3.88% (96%) 0.07% (56%) 6.78% (100%) 6.50% (92%) 2.16% (82%)
(b) DR-learner with Regression Forests
. Scenario 1: DP-Protected Covariates Scenario 2: DP-Protected Outcome
Privacy
PROPOSED SPLIT-ONLY NON-HONEST PROPOSED SPLIT-ONLY NON-HONEST
No 0.43% (84%) 0.43% (84%) 0.02% (68%) 0.43% (84%) 0.43% (84%) 0.02% (68%)
Very Low 5.58% (96%) 5.36% (96%) 0.51% (68%) 2.20% (96%) 2.20% (96%) 0.07% (60%)
Low 5.33% (92%) 5.51% (96%) 0.72% (76%) 3.95% (96%) 3.98% (96%) 0.33% (62%)
Medium 5.77% (94%) 6.02% (92%) 0.16% (56%) 4.71% (98%) 4.72% (98%) 0.33% (60%)
High 5.75% (92%) 6.05% (96%) 0.63% (68%) 5.58% (96%) 5.52% (92%) 0.29% (58%)
Very High 5.32% (92%) 5.23% (92%) 0.46% (60%) 7.05% (100%) 6.92% (100%) 0.40% (60%)

Note: We calculate the value improvement from 50 splits, along with the percentage of replications in which the value of the focal method is
greater than the value of the DEFAULT approach (given in parentheses).

Web Appendix F.6.2 XGBoost-based Models

Next, we consider two additional boosting-tree models: R-learner and DR-learner with XG-
Boost models. Results for the T-learner are available upon request and are consistent with the
findings reported here. To fine-tune the hyperparameters in XGBoost models, we perform a
single train-holdout split under the non-privacy setting. For conditional mean outcome mod-
els, we select parameters that minimize mean squared prediction error, while for the CATE
model in the R-learner, we choose parameters that maximize the AUTOC value. The search
ranges for key hyperparameters include: learning rate n € {0.05,0.10,0.15,0.20,0.25}, maxi-
mum depth in each tree {1, 2, 5, 10, 20}, and the maximum number of iterations {10, 20, 30, 40, 50}.

The optimal hyperparameters are as follows:

* (R-learner) Conditional mean outcome model: 7 = 0.20, maximum tree depth: 2, the max-
imum number of iterations: 50; CATE model: n = 0.15, maximum tree depth: 4, the maxi-

mum number of iterations: 10.
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* (DR-learner) Conditional mean outcome model for the treatment group: = 0.15, maximum
tree depth: 2, the maximum number of iterations: 50; Conditional mean outcome model for
the control group: n = 0.20, maximum tree depth: 2, the maximum number of iterations: 20;

CATE model: n = 0.15, maximum tree depth: 4, the maximum number of iterations: 10.

Table reports the RMSE for the two CATE models. For R-learner, all the model cal-
ibration methods significantly outperform the DEFAULT method. For T-learner, both the PRO-
POSED and SPLIT-ONLY methods outperform the DEFAULT method, while the NON-HONEST
model calibration method fail to reduce RMSE in the setting with DP-protected outcomes.

Table App-45: RMSE of GATE (Multiplied by 100) Across Varying Privacy Levels

(a) R-learner wtih XGBoost Models

Privacy Scenario 1: DP-Protected Covariates Scenario 2: DP-Protected Outcome
PROPOSED SPLIT-ONLY NON-HONEST DEFAULT PROPOSED SPLIT-ONLY NON-HONEST DEFAULT
No 0.46 (100%) 0.48 (100%) 0.48 (100%) 9.62 0.46 (100%) 0.48 (100%) 0.48 (100%) 9.62
Very Low 0.50 (100%) 0.47 (100%) 0.45 (100%) 9.65 0.53 (100%) 0.59 (100%) 0.52 (100%) 9.63
Low 0.48 (100%) 0.43 (100%) 0.43 (100%) 9.65 0.58 (100%) 0.71 (100%) 0.58 (100%) 9.69
Medium 0.48 (100%) 0.44 (100%) 0.45 (100%) 9.66 0.66 (100%) 0.8 (100%) 0.70 (100%) 9.61
High 0.47 (100%) 0.41 (100%) 0.41 (100%) 9.61 0.73 (100%) 0.9 (100%) 0.77 (100%) 9.56
Very High 0.49 (100%) 0.42 (100%) 0.41 (100%) 9.66 0.84 (100%) 1.01 (100%) 0.92 (100%) 9.52
(c) DR-learner with XGBoost Models
. Scenario 1: DP-Protected Covariates Scenario 2: DP-Protected Outcome
Privacy
PROPOSED SPLIT-ONLY NON-HONEST DEFAULT PROPOSED SPLIT-ONLY NON-HONEST DEFAULT
No 0.56 (100%) 0.50 (100%) 0.46 (100%) 9.70 0.56 (100%) 0.50 (100%) 0.46 (100%) 9.70
Very Low 0.47 (100%) 0.44 (100%) 0.4 (100%) 9.69 0.82 (100%) 0.59 (100%) 0.59 (100%) 9.70
Low 0.51 (100%) 0.43 (100%) 0.43 (100%) 9.68 0.85 (100%) 0.62 (100%) 0.59 (100%) 9.59
Medium 0.46 (100%) 0.4 (100%) 0.4 (100%) 9.65 1.03 (100%) 0.82 (100%) 0.79 (100%) 9.55
High 0.52 (100%) 0.45 (100%) 0.41 (100%) 9.67 1.01 (100%) 0.81 (100%) 0.73 (100%) 9.71
Very High 0.53 (100%) 0.42 (100%) 0.41 (100%) 9.63 1.22 (100%) 1.02 (100%) 1.03 (100%) 9.64

Note: We calculate the RMSE from 50 random splits, along with the percentage of replications in which the value of the focal method is greater
than the value of the DEFAULT approach (given in parentheses).

Table reports the AUTOC values (multiplied by 100) for different methods across
various privacy levels. For the R-learner, all model calibration methods significantly outper-
form the DEFAULT method.

Table presents the average value improvement across different methods. For both
the R-learner and DR-learner, the calibrated models do not produce significant gains over the
DEFAULT model. This is because all models, including the DEFAULT and the various calibrated
versions, predict positive treatment effects for over 99.9% of customers. As a result, when tar-
geting is based solely on whether the predicted CATE is positive, all models recommend tar-
geting nearly the entire customer base. Nevertheless, the substantial improvements in RMSE

and AUTOC highlight the value of honest model calibrations. This benefit becomes particu-
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Table App-46: AUTOC Values (Multiplied by 100) Across Varying Privacy Levels

(a) R-learners with XGBoost Models

Scenario 1: DP-Protected Covariates Scenario 2: DP-Protected Outcome

Privacy
PROPOSED SPLIT-ONLY NON-HONEST DEFAULT PROPOSED SPLIT-ONLY NON-HONEST DEFAULT
No 0.62 (64%) 0.60 (44%) 0.62 (56%) 0.61 0.62 (64%) 0.60 (44%) 0.62 (56%) 0.61
Very Low 0.60 (65%) 0.56 (60%) 0.55 (80%) 0.55 0.57 (56%) 0.52 (38%) 0.57(56%) 0.56
Low 0.48 (72%) 0.49 (76%) 0.50 (84%) 0.47 0.47 (80%) 0.41 (36%) 0.39 (28%) 0.44
Medium 0.42 (80%) 0.42 (72%) 0.42 (80%) 0.42 0.39 (84%) 0.38 (64%) 0.38 (68%) 0.33
High 0.39 (74%) 0.39 (76%) 0.39 (72%) 0.36 0.35 (82%) 0.30 (64%) 0.30 (56%) 0.26
Very High 0.31 (76%) 0.31 (68%) 0.30 (70%) 0.29 0.33 (76%) 0.29 (68%) 0.32 (74%) 0.25
(b) DR-learner with XGBoost Models
. Scenario 1: DP-Protected Covariates Scenario 2: DP-Protected Outcome
Privacy
PROPOSED SPLIT-ONLY NON-HONEST DEFAULT PROPOSED SPLIT-ONLY NON-HONEST DEFAULT
No 0.68 (80%) 0.68 (84%) 0.65 (82%) 0.60 0.68 (80%) 0.68 (84%) 0.65 (82%) 0.60
Very Low 0.58 (78%) 0.57 (56%) 0.58 (72%) 0.56 0.61 (78%) 0.59 (74%) 0.61 (82%) 0.57
Low 0.51 (88%) 0.50 (76%) 0.49 (78%) 0.46 0.53 (74%) 0.52 (72%) 0.53 (74%) 0.49
Medium 0.43 (74%) 0.43 (72%) 0.44 (64%) 0.40 0.49 (72%) 0.44 (78%) 0.42 (78%) 0.35
High 0.40 (72%) 0.39 (64%) 0.40 (72%) 0.36 0.42 (88%) 0.43 (88%) 0.46 (84%) 0.38
Very High 0.32 (70%) 0.32 (66%) 0.33 (74%) 0.30 0.31 (92%) 0.29 (88%) 0.29 (90%) 0.17

Note: We calculate the AUTOC values from 50 random splits, along with the percentage of replications in which the value of the focal method
is greater than the value of the DEFAULT approach (given in parentheses).

larly important in practical applications where targeting is constrained—such as when firms

can only reach a subset of customers due to budget limitations or strategic priorities.

Table App-47: Targeting Value Improvement Across Varying Privacy Levels

(a) R-learner with XGBoost Models

Scenario 1: DP-Protected Covariates

Scenario 2: DP-Protected Outcome

Privacy
PROPOSED SPLIT-ONLY NON-HONEST PROPOSED SPLIT-ONLY NON-HONEST
No 0.16% (64%) 0.16% (62%) 0.02% (52%) 0.16% (64%) 0.16% (62%) 0.02% (52%)
Very Low 0.01% (52%) 0.01% (52%) 0.00% (54%) 0.03% (52%) 0.03% (64%) 0.02% (48%)
Low -0.03% (46%) -0.03% (40%) 0.00% (52%) 0.04% (56%) -0.04% (52%) 0.00% (52%)
Medium -0.01% (48%) -0.01% (56%) -0.01% (60%) 0.02% (54%) 0.01% (56%) 0.02% (48%)
High 0.05% (60%) -0.05% (48%) 0.01% (58%) 0.05% (52%) -0.04% (46%) -0.01% (56%)
Very High -0.02% (50%) -0.06% (46%) -0.01% (44%) 0.12% (52%) 0.14% (56%) -0.04% (46%)
(c) DR-learner with XGBoost Models
. Scenario 1: DP-Protected Covariates Scenario 2: DP-Protected Outcome
Privacy
PROPOSED SPLIT-ONLY NON-HONEST PROPOSED SPLIT-ONLY NON-HONEST
No 0.03% (60%) 0.02% (54%) 0.01% (58%) 0.03% (60%) 0.02% (54%) 0.01% (58%)
Very Low 0.02% (60%) 0.01% (64%) -0.01% (62%) -0.02% (46%) -0.02% (46%) -0.01% (52%)
Low 0.00% (58%) 0.00% (54%) 0.01% (52%) 0.01% (58%) 0.01% (60%) 0.01% (54%)
Medium 0.01% (52%) -0.02% (44%) 0.00% (54%) 0/02% (64%) 0.00% (50%) 0.02% (52%)
High -0.01% (48%) -0.02% (42%) 0.01% (58%) -0.01% (64%) -0.02% (56%) 0.00% (48%)
Very High 0.00% (68%) 0.01% (52%) -0.02% (64%) 0.03% (58%) 0.02% (56%) 0.00% (56%)

Note: We calculate the value improvement from 50 splits, along with the percentage of replications in which the value of the focal method is

greater than the value of the DEFAULT approach (given in parentheses).
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