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Abstract
The success of customer relationship management programs ultimately depends on the firm’s ability to identify and leverage dif-

ferences across customers—a difficult task when firms attempt to manage new customers, for whom only the first purchase has

been observed. The lack of repeated observations for these customers poses a structural challenge for firms to infer unobserved

differences across them. This is what the authors call the “cold start” problem of customer relationship management, whereby

companies have difficulties leveraging existing data when they attempt to make inferences about customers at the beginning of

their relationship. The authors propose a solution to the cold start problem by developing a probabilistic machine learning mod-

eling framework that leverages the information collected at the moment of acquisition. The main aspect of the model is that it

flexibly captures latent dimensions that govern the behaviors observed at acquisition as well as future propensities to buy and to

respond to marketing actions using deep exponential families. The model can be integrated with a variety of demand specifica-

tions and is flexible enough to capture a wide range of heterogeneity structures. The authors validate their approach in a retail

context and empirically demonstrate the model’s ability to identify high-value customers as well as those most sensitive to

marketing actions right after their first purchase.
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Customers differ not only in their preferences for products and
services but also in the way they respond to marketing actions.
Understanding customer heterogeneity is at the heart of cus-
tomer relationship management (CRM) programs—from
obtaining accurate estimates of the value of current and future
customers to deciding which individual customers should be
targeted in the next marketing campaign. Over the last three
decades, the marketing literature has provided researchers and
analysts with methods to empirically estimate unobserved dif-
ferences across customers using their past history. These
methods allow firms to identify customers with higher versus
lower expected lifetime value (e.g., Fader, Hardie, and Lee
2005; Fader, Hardie, and Shang 2010; Schmittlein, Morrison,
and Colombo 1987), those who are less sensitive to a price
increase (e.g., Allenby and Rossi 1998; Rossi, McCulloch,
and Allenby 1996), or those who are more receptive to market-
ing communications (e.g., Ansari and Mela 2003). However,
when firms attempt to implement CRM programs on customers
who have been acquired recently, they only observe these cus-
tomers’ first purchase. This lack of repeated observations pre-
sents a structural challenge for estimating unobserved

differences across recently acquired customers, precluding
firms from leveraging such heterogeneity.1 We call this the
“cold start” problem of CRM—that is, the challenge that
firms face when trying to make inferences about customers at
the outset of the relationship, when data are limited.

Firms have traditionally relied on demographics (e.g., age,
gender) and/or recency metrics (e.g., how many weeks since
the last transaction) to target marketing efforts with limited
data (Shaffer and Zhang 1995). These approaches, however,
face practical limitations: recency metrics, for example, do
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not differentiate among recently acquired customers (as they all
were acquired at the same time), and relevant personal informa-
tion is generally difficult to collect or poses data privacy chal-
lenges. However, thanks to technological advances, firms can
now increasingly observe a wider range of behaviors on each
customer touch. What in the past might have been considered
simply a transaction added to a customer base is now a collec-
tion of behaviors that a customer incurs while making a first
purchase (e.g., Did the transaction occur online or offline?,
Did the customer buy any new products or old bestsellers in
the transaction?, Did they buy any products on discount?).
While some of these characteristics may merely coincide with
the moment in which the customer made their first purchase,
others may carry important information, as they reflect latent
customer preferences/attitudes. Thus, although firms observe
a newly acquired customer on only one occasion, they now
have many more cues to form a “first impression” of this cus-
tomer, which can be used to understand heterogeneity across
recently acquired customers.

We present a solution to the cold start problem that is flexi-
ble, scalable, and general. Specifically, we augment transac-
tional data with information collected when a customer makes
their first purchase—information already available in the
firm’s database—and propose a probabilistic machine learning
(ML) modeling framework that extracts information relevant to
making inferences about the customer’s future behavior. The
model, which we term the “First-Impression Model” (FIM),
reflects the premise that behaviors and choices observed in
newly acquired customers can be informative about underlying
traits that are, in turn, predictive of their future behavior. We
operationalize these customer traits via a finite set of latent
factors that enable the model to reduce the dimensionality of,
while extracting relevant signals from, the data, and we
assume those traits to drive (at least partially) customer behav-
iors observed both at the moment of acquisition and in the
future.

In essence, the FIM is a deep probabilistic model of demand
(main outcome of interest to the firm) and acquisition character-
istics (customer outcomes that are observed by the firm at the
moment of acquisition) where the individual-level parameters
of each of these submodels are projected into a lower-
dimension space using a two-layered deep exponential family
(DEF) component. The lower layer of the DEF component cap-
tures the relevant interrelations among the individual-level
parameters. We incorporate automatic relevance determination
(ARD) priors for this layer, enforcing sparsity and automati-
cally reducing the dimensionality of the individual-level param-
eters, similarly as in a Bayesian principal component analysis
(PCA) model and modern applications of “supervised” factor
models. The model departs from the aforementioned models
by allowing nonlinear relationships among the factors in the
lower layer through the upper layer.

First among four notable aspects of the proposed modeling
approach is that the model can capture a wide range of relation-
ships between observed behaviors and variables of interest—for
example, the interaction effects between two (or more)

acquisition variables and the outcomes of interest. Because
the model will recover them from the data, those (linear or non-
linear) relationships do not need to be prespecified. Second,
unlike traditional dimensionality-reduction methods, the
number of latent factors do not need to be specified a priori.
The model infers the number of relevant dimensions from the
data through ARD. Third, the model is scalable, being applica-
ble to data sets with large numbers of customers and many
acquisition characteristics, some of which might contain
missing observations. When present, these missing observa-
tions are easily handled by the FIM, which models them as out-
comes using a Bayesian estimation framework. Lastly, the
proposed modeling framework is general in the sense that can
be integrated with any demand specification, from simple
linear specifications to more complex model structures that
incorporate a latent attrition component (i.e., “buy-till-you-die”
models) or other forms of customer dynamics (e.g., hidden
Markov models). This desirable feature implies that marketers
across business settings, contractual and noncontractual, can
use this framework by making minor adjustments to the
demand/transactional model.

Using a set of simulation analyses, we demonstrate that the
FIM inferences for newly acquired customers are more accurate
than those generated by multiple tested benchmarks. Unlike
other models, our approach accommodates flexible relation-
ships among relevant behaviors, enabling the model to make
accurate inferences about newly acquired customers when the
relationships between acquisition characteristics and demand
parameters are unknown to the firm or researcher.

We then apply the FIM to a retail context and demonstrate
how the focal firm can overcome the cold start problem by aug-
menting the (thin) historical data using its transactional data-
base and employing the proposed modeling framework that
extracts the relevant information from the augmented customer
data. First, we use the transactional data to extract the character-
istics of every customer’s first purchase (e.g., price paid,
number of products purchased) as well as observed product
characteristics (e.g., category purchased, package size).
Second, we leverage the transactional data from customers
outside our sample to create a continuous multidimensional rep-
resentation of products (or product embeddings). Specifically,
we use the word2vec algorithm—an ML approach originally
developed to analyze textual data—to model the co-occurrence
of products in customer baskets. This yields a set of product
embeddings that can be used to augment data on customers’
first transactions on the basis of the specific products they
bought. We then estimate the FIM to the augmented cold
start data and make individual-level predictions for newly
acquired customers outside the calibration sample.

We empirically demonstrate the superiority of the FIM at
distinguishing heavy spenders from those expected to yield
less value, immediately after they make their first purchase.
The model can also be used to highlight the set of acquisition
characteristics most predictive of future behavior. For
example, we find the predicted top 10% heavy spenders to be
less likely to be acquired during the holiday period and more
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likely to be acquired offline, and their first purchases to tend to
include expensive and discounted products. The model also
captures differences in customer responsiveness to marketing
actions, enabling firms to identify and characterize those most
(or least) sensitive to specific marketing communications. For
example, we find that customers most sensitive to email market-
ing are more likely to be acquired online and buy less expensive
products, and their first purchases are likely to include fewer
units. We also find nonlinear relationships between acquisition
characteristics and customer responsiveness to marketing
actions. For example, the differences in email sensitivities
across customers who received discounts on their first purchase
exist only for those who also purchased a recently introduced
product.

The present research develops a modeling framework that
overcomes the cold start problem by linking customers’ early
observed behaviors and choices with future purchase behavior,
enabling firms to make meaningful predictions about newly
acquired customers. Methodologically, our article contributes
to the CRM literature by being the first to incorporate—in a
general, flexible, and scalable way—information obtained at
the moment of acquisition, which is generally discarded due
to an inability to use it effectively. Substantively, our research
is relevant to marketers faced with the challenge of managing
customers soon after acquisition. We show how the proposed
modeling framework enables firms to identify and characterize,
from information collected at the moment of acquisition, high-
value customers and those most sensitive to marketing commu-
nications. From a practical perspective, our research guides
firms in the use of cold start data to augment information
already in their databases. To that end, we employ develop-
ments in ML and natural language processing to create a
matrix of product “embeddings” that enable firms to character-
ize (even recently acquired) customers on the basis of the prod-
ucts they purchase. We believe this approach to customer
segmentation to be highly promising, enabling firms to obtain
rich information about individual customers without recourse
to customer-provided data or external sources that might pose
privacy concerns.

The remainder of the article is organized as follows.
Following a brief review of the literature related to our work,
we introduce the cold start problem and illustrate the main chal-
lenges to solving it in practice. We next present our modeling
framework, discuss its components, and evaluate its perfor-
mance relative to existing approaches that could be used to
solve the cold start problem. We then apply our model in the
context of an international beauty and cosmetic retailer. We
conclude with a discussion of the implications, managerial rele-
vance, and future directions of our research.

Previous Literature
Our research relates to the broad literature on customer-base
analysis that has provided managers and analysts with
tools for understanding, forecasting, and managing the (hetero-
geneous) behavior of customers. It relates particularly to work

that has incorporated the effect of marketing variables or,
more generally, time-varying covariates in customer lifetime
value (CLV) models. Notable work in this area includes
Schweidel and Knox (2013) and Schweidel, Park, and Jamal
(2014), who, building on the foundations of the Beta-
Geometric/Beta-Binomial model (Fader, Hardie, and Shang
2010), incorporate the effect of direct marketing activity and
past customer activity on the latent attrition process and the cus-
tomer’s purchase propensity. In addition, Knox and Van Oest
(2014) and Braun, Schweidel, and Stein (2015) incorporate
the effect of the customer service experience and customer com-
plaints on the latent attrition process of the Beta-Geometric/
Negative Binomial Distribution model (Fader, Hardie, and
Lee 2005). Our research and methodological objectives differ
in two main ways. Whereas the main purpose of the aforemen-
tioned studies is to capture the effect of time-varying marketing
variables (e.g., direct marketing activities, customer com-
plaints) on customer behavior, we extract as much information
as possible from cold start data. Although the referenced models
could be used to incorporate a handful of prespecified acquisi-
tion variables, they are not well-suited to extract relevant infor-
mation from noisy and redundant variables, as is the case with
cold start data. Second, we do not build on a specific demand
specification tied to a business context but, rather, provide a
modeling framework that can incorporate any of the models
of behavior presented in previous research.

On a substantive level, our work relates to Gopalakrishnan,
Bradlow, and Fader (2016), who propose a framework for mul-
ticohort data able to predict the behavior of new cohorts of cus-
tomers for whom little transactional data are available. These
authors build a model that allows customers to be inherently
different depending on when they were acquired (i.e., which
cohort they belong to) while capturing the underlying dynamics
across cohorts. We posit that such inherent heterogeneity can be
explained (at least partially) by individual-level observed char-
acteristics collected when customers make their first purchase.
This is consistent with Anderson et al. (2021), who document
the existence of “harbinger products.” These are products
that, when purchased by a customer in their first transaction,
are an indicator of the customer being less likely to purchase
again and, thus, provide less value to the firm. Our work also
relates to Loupos, Nathan, and Cerf (2019), who use social
network data for recently acquired customers to explain hetero-
geneity in their future value to the firm. To the best of our
knowledge, our approach is the first to integrate several types
of information collected at the moment of acquisition and to dif-
ferentiate responsiveness to marketing actions—not only indi-
vidual propensity to transact—on the basis of customers’ first
purchases. The latter aspect is crucial in cases in which targeting
occurs soon after the customer is acquired or when it is chal-
lenging to secure a second purchase.

The premise that behaviors observed at the moment of acqui-
sition can help firms explain heterogeneity in future behavior is
consistent with empirical findings in the CRM literature (e.g.,
Fader, Hardie, and Jerath 2007; Voigt and Hinz 2016), specif-
ically, work on customer acquisition that has investigated the
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relationship between acquisition-related information (e.g.,
channel of acquisition) and subsequent CLV (e.g., Chan, Wu,
and Xie 2011; Datta, Foubert, and Van Heerde 2015; Lewis
2006; Schmitt, Skiera, and Van den Bulte 2011; Steffes,
Murthi, and Rao 2011; Uncles, East, and Lomax 2013;
Verhoef and Donkers 2005; Villanueva, Yoo, and Hanssens
2008). Although our work investigates relationships between
acquisition-related variables and subsequent customer behav-
ior, it differs in two important ways. First, our end goal is to
inform decisions related to the management of already-acquired
customers (e.g., whom to target in the next campaign) rather
than the design of optimal strategies for customer acquisition
(e.g., free trials to increase customer acquisition). The goal of
our modeling framework is to extract as much observed hetero-
geneity as possible from initial behaviors while controlling for
firms’ acquisition activities rather than estimate the causal
impact of these acquisition variables on future behavior.
Second, this literature suggests that customers are inherently
different depending on how they have been acquired. We
broaden the range of acquisition-related behaviors by examin-
ing not only how a customer was acquired (e.g., online vs.
offline, trial vs. regular) but also what they did when they
were acquired (e.g., What kind of product did they buy?,
How much did they pay?), thus extracting more information
from the initial transaction. The latter is especially relevant
for managers and analysts in large retail and hospitality busi-
nesses, among others, given that such information is not only
easily observed but also typically already in their databases.

From a methodological perspective, we contribute to the lit-
erature on applying probabilistic ML methods to marketing
(Dew and Ansari 2018; Dew, Ansari, and Li 2020; Jacobs,
Donkers, and Fok 2016). More specifically, our work relates
to the literature on applying DEFs (Ranganath et al. 2015) as
building blocks of more complex models (Ranganath et al.
2016; Wang and Blei 2019) and other generative models such
as Bayesian PCA (Bishop 1999; Mohamed, Ghahramani, and
Heller 2008).

The “Cold Start” Problem: An Example
from a Retail Setting
We turn to a retail context to illustrate the cold start problem and
to motivate and validate our modeling framework. Retail is a
good context to examine this phenomenon for several
reasons. First, firms in this sector increasingly collect transac-
tional data and rely on analytics to better manage their custom-
ers (Marr 2015). Second, retail represents a large proportion of
the total economy, with revenues accounting for 31% for the
global gross domestic product (Research and Markets 2016).
Finally, the data structure in most retail settings—in particular,
the one used in this research—resembles that in many other
industries (e.g., hospitality, entertainment business, nonprofit
organizations) that face similar data challenges when imple-
menting CRM programs.

The Cold Start Problem
Consider a retailer that sells cosmetic/beauty products via both
online and offline channels.2 Like most other companies, it
records the transactions of all individual customers since the
moment they were acquired, including the time of purchase,
the products purchased in each particular transaction, their
price and discounts (if any), along with information about the
CRM activities that the company engaged in (e.g., email mar-
keting activities). With these transactional data at hand, the
focal company could apply some of the aforementioned
models and be able to predict, with a good degree of accuracy,
the number of transactions that customers with different trans-
action patterns would make in future periods (e.g., Fader,
Hardie, and Shang 2010). The marketer can also incorporate
the historical marketing actions to capture how those variables
affected transaction propensities and customer value (e.g.,
Schweidel and Knox 2013; Schweidel, Park, and Jamal
2014). However, when making these types of inferences for
recently acquired customers, for whom the firm has no transac-
tional history or past marketing interventions, the “best guess”
that the marketer can get is the population average. This is what
we call the “cold start problem of CRM,” whereby firms cannot
make individual-level inferences about newly acquired custom-
ers to differentiate them, therefore diminishing the effectiveness
of future CRM activities.

The premise of this research is that, while it is the lack of
(historical) data that causes the cold start problem, firms now
have access to other data sources that, properly leveraged, can
help them overcome the cold start problem. Granted, if firms
observed only that the customer made a transaction, it would
be very difficult to overcome this problem. However, most
firms not only know when a customer made their first transac-
tion but also record details such as the channel/store used, the
exact product the customer purchased, the price paid, whether
they used a discount, the time of the day, and so forth.3 We
propose leveraging those existing data and extract what we
call “acquisition characteristics” from each customer’s first
transaction.4 We contend that these acquisition characteristics/

2 This is the specific context of our empirical application. The full set of details
about the focal firm and the data are presented in the “Empirical Application”
section; in this section, we present only the relevant information to motivate
the business problem and the modeling challenges.
3 Note that the amount of data collected by firms also include data prior to the
moment of acquisition. For example, e-retailers collect information via cookies,
which could identify which customers visited the website previously (without
making a purchase). When available, those data can be included in the exact
same fashion as the acquisition characteristics. For simplicity, we denote
“acquisition” data to all information available to the firm at the moment of
acquisition, acknowledging that such data could also incorporate actions the
customer performed before their first transaction.
4 In theory, the data could also be augmented with characteristics of the second
or third transaction for customers who are repeat buyers. However, we use only
the first transaction because that is the data that all customers (i.e., just acquired
and existing) have in common, which is the key to making inferences about
recently acquired customers. Adding information about each subsequent trans-
action might add precision to the individual-level inferences of repeat users but
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choices can be informative about underlying customer differ-
ences that can predict customers’ future behavior. Because
these data are also available for customers with longer tenure
with the company, the firm would be able to uncover the
(subtle) relationships between the choices observed at the
moment of acquisition and customer behavior down the road.

Augmenting Cold Start Data with Acquisition
Characteristics
Consider our focal retailer, which is trying to make inferences
about its customers right after they have been acquired. A
natural first step for the analyst would be to select a handful
of variables collected at the acquisition moment (e.g., channel
of acquisition) and use existing models to relate those character-
istics to future demand (e.g., Chan, Wu, and Xie 2011). The
caveat of doing so is that so few variables might not fully
capture the richness of the acquisition data, and the level of per-
sonalization would likely be limited, as these few variables
capture only a coarse representation of customers’ heterogene-
ity. We aim to fully augment the acquisition data to broaden the
amount of information that would (potentially) be linked to
future behavior, therefore increasing marketers’ ability to
solve the cold start problem.

Specifically, using the (existing) data from each first transac-
tion, we propose augmenting cold start data with three types of
acquisition variables: (1) transaction characteristics (e.g.,
channel, price paid, holiday season) and (2) product characteris-
tics5 (e.g., product category, package size), which are easily
extracted from the transactional database, and (3) shopping
basket (latent) representation. The latter type of data aims to
capture the “nature” of products that the customer purchased,
beyond what the standard (observed) product categories repre-
sent. Our premise is that the nature of products purchased can
signal the type of customer who purchases those. For example,
in the cosmetics market, certain ingredients or aromas character-
ize lines of products. It is possible that customers who discover
the brand by buying products of a certain nature are similar in
the way they behave in the future. Because such information is
not readily available from the firm’s database, we need a
method to encode the information embedded in each product
and then aggregate it at the basket level.6

Previous literature has used different methods to encode
such information, from human coding based on full description
of the product to ML approaches that apply textual analyses to
the description of products or that leverage co-occurrence of
products in basket data to create measures of similarity
across products (e.g., Chen et al. 2020; Jacobs, Donkers, and
Fok 2016; Kumar, Eckles, and Aral 2020; Ruiz, Athey, and
Blei 2017). We take the latter approach and leverage the trans-
action data from anonymous customers to create continuous
multidimensional representations of products, called “product
embeddings,” that capture the nature of the product.
Specifically, we create a co-occurrence matrix based on the
composition of shopping baskets (i.e., which SKUs are pur-
chased together?) and implement word2vec (Mikolov et al.
2013), an ML approach widely used for natural language pro-
cessing, to map each item to a multidimensional vector that
captures similarities across products. This exercise is similar
to creating a perceptual map from association data (Netzer
et al. 2012) in which the co-occurrence of products in a
basket is used as proxy of association between two products.
(For details about how we process the transaction data and
create the product embeddings using the word2vec algorithm,
see Web Appendix A.) Once we represent each product by a
continuous vector, we can easily characterize the first purchase
of any customer by computing moments of the product vectors
in that basket.

In summary, using the transactional data already collected
by the firm, one can easily augment each customer’s data
with a high-dimensional vector that captures a wide variety of
acquisition characteristics, including details about the first
transaction and the type of products purchased.7

Predictive Power of Augmented Data
A natural question to ask is: Do acquisition characteristics carry
information about future behavior? While this is an empirical
question, we present preliminary evidence from our empirical
application that these augmented acquisition characteristics in
turn explain differences in subsequent demand behavior
across customers. To do so, we select customers who have
been with the company for at least 15 months and relate their
total number of repeat purchases during those 15 months with
their (augmented) acquisition characteristics. We explore the
relationship between individual acquisition characteristics and
future transactions (Figure 1) as well as possible interactions
among acquisition variables in their association with future
demand (Figure 2).

Indeed, acquisition characteristics are predictive of custom-
ers’ future transactions. Consistent with common belief in the
industry (e.g., Artun 2014; RJMetrics 2016), customers who
were acquired during the holiday season are less valuable to
the firm, as we find that they are less likely to purchase in the

not necessarily to the inferences of recently acquired customers, which is our
main focus.
5 Acquisition variables are constructed from the whole first transaction, which
might include one or multiple products. That is, the product characteristics
are summary statistics from the collection of products purchased in the first
transaction.
6 One alternative to this solution would be to include a dummy variable per
(available) stockkeeping unit (SKU). This approach would be straightforward
in business contexts where the product space is small. However, when the
firm offers a large selection of items or SKUs—as is the case for most
retailers—the vector of dummy variables would be too sparse to capture simi-
larities among baskets and thus would prevent any model from learning
across customers. For those cases, we recommend using a lower-dimensional
vector representing the product space, as we do in this research.

7 In our empirical application, this vector has 31 dimensions. We present further
details in the “Empirical Application” section.
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future. In contrast, customers who bought using discounts on
their first transaction generally buy more during the next 15
months than customers who did not. A similar pattern exists
for customers who bought a recently introduced product on
their first transaction and for those who purchased products
from the hair care category. Interestingly, this model-free anal-
ysis also suggests that some of these relationships are likely to
be nonlinear. For example, looking at average price paid per
item, customers in the lowest quartile (Q1) tend to buy less

frequently in their first 15 periods than all other customers.
Similar nonlinear relationships appear for the number of units
and the total amount of the ticket.

Interesting patterns also emerge in Figure 2. On the left, we
group customers depending on whether they were acquired
during the winter holiday season, coupled with whether they
purchased travel-size products. We find that purchasing travel-
size products moderates the relationship between being
acquired during the holidays and the future number of

Figure 1. Observed (mean) repeated transactions as a function of a sample of augmented acquisition characteristics.
Notes: All acquisition variables are constructed from the first transaction of each customer. Repeated transactions do not include the first transaction. Error bars

represent standard errors.

Figure 2. Observed (mean) repeated transactions as a function of interactions among acquisition characteristics.
Notes: All acquisition variables are constructed from the first transaction of each customer. Repeated transactions do not include the first transaction. Error bars

represent standard errors.
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transactions. In the panel on the right, we observe that purchas-
ing a discounted product in the first transaction signals lower
value only if the purchase did not include a new product.
Taken together, these results present evidence of a relationship
between acquisition characteristics and future transactions, con-
firming that augmenting cold start data with acquisition charac-
teristics incorporates relevant information to infer customers’
differences.

Nevertheless, this simple analysis is insufficient for solving
the cold start problem of CRM, as we would likely miss useful
information from the data. First, it can be performed for only a
subsample of customers—those we observe for a relatively long
period of time (e.g., 15 months)—to have a fair comparison
across customers over the same number of periods. Second,
this type of analysis examines each variable independently
(Figure 1), at most allowing for single interactions (Figure 2).
Given that the goal is to extract relevant interrelations in high-
dimension cold start data, it will be more effective (and effi-
cient) to examine these interrelations collectively, while allow-
ing for flexible relationships among the variables. Furthermore,
the model-free analysis does not shed light on customers’
response to marketing actions. These results indicate that
“holiday” customers are less likely to transact again.
However, are they more/less sensitive to the firm’s communica-
tion? How strongly will they react product introductions? A
model is necessary to effectively extract the information from
the acquisition characteristics to predict differences in transac-
tion propensities as well as in responsiveness to marketing
actions. Before presenting our modeling framework, we
describe the methodological challenges that such a model
should overcome.

Modeling Challenges
Our solution to overcome the cold start problem ultimately
depends on the model’s ability to extract the information
hidden in the augmented data that is predictive of future behav-
ior. Naturally, increasing the dimensionality of the acquisition
data increases the chances of adding (at least potentially) infor-
mation that will be relevant to infer customer differences down
the road. However, expanding the dimensionality of the acqui-
sition data also adds methodological challenges.

First, several of those augmented variables are likely to be
irrelevant. Many of the behaviors observed in the first purchase
are likely to be random and not systematically related to how
customers will behave in the future. Second, some of these aug-
mented data are multiple signals from the same underlying
behaviors, implying that much of the data would be redundant.
For example, a price-conscious customer may purchase a set of
travel-sized, cheap products that are discounted. Although the
price and discount variables capture different types of informa-
tion (e.g., a discounted product may still be an expensive one),
these variables are clearly correlated as they are both signals of
the customer’s preference for inexpensive products. Moreover,
if one also were to include latent representations of the products
bought, these representations would likely correlate with prices

and with how frequently they are discounted, adding to the
redundancy already present among augmented variables.
Taken together, these characteristics suggest that it is likely
that cold start data would have low “signal-to-noise” ratio,
increasing the difficulty of recovering the relationships
between acquisition characteristics and future behavior.

Importantly, the underlying relationships between acquisi-
tion variables and future demand is unknown. As indicated
by the early exploration of the data (Figures 1 and 2), those rela-
tionships are unlikely to be linear. It is unrealistic to recommend
that a firm would explore all possible interactions and nonlinear
specifications among their augmented acquisition characteris-
tics, and is especially cumbersome when also interested in cus-
tomers’ response to marketing actions. Moreover, increasing
the dimensionality of the augmented data only emphasizes
this challenge as it would increase the number of potential
nonlinear relationships and interactions among acquisition var-
iables. Another potential limitation of increasing the dimension-
ality of the acquisition variables is that some variables might be
missing for some customers. Missing observations present chal-
lenges to estimate models that use those missing variables as
covariates because they require imputation methods—cumber-
some for high-dimensional spaces—or deletion of customers
(or variables) from the data, which directly reduces the
amount of information, defeating the purpose of the data aug-
mentation step.

In this research, we propose a modeling framework that
overcomes all these issues. We combine a flexible demand
specification (that can be applied to a wide range of marketing
contexts) with state-of-the-art ML methods (addressing nonlin-
earities and data redundancy) within a Bayesian framework
(that extracts signals from the acquisition characteristics while
handling missing data). The resulting modeling framework is
a flexible probabilistic ML model that links the individual-level
parameters governing a customer’s future behavior (e.g., trans-
action propensities, sensitivity to marketing actions) with a
latent representation of the behaviors/choices observed at the
moment of acquisition. This modeling approach seamlessly
captures flexible relationships among variables (linear and non-
linear) without the need to prespecify those relationships a
priori. Moreover, the model explicitly accounts for interrela-
tions among acquisition data, which helps regularize the flexi-
ble model and avoid overfitting.

These benefits will become clear as we build and validate the
model in the next section, where we also show how this
approach dominates existing alternatives that address some
(but not all) modeling challenges. For example, we compare
it with a standard hierarchical Bayesian (HB) model with acqui-
sition characteristics included as covariates, a fully hierarchical
model where acquisition characteristics and demand are jointly
correlated using a multivariate Gaussian distribution, and a
(supervised) Bayesian PCA that aims to reduce dimensionality
of acquisition characteristics as well as demand parameters.

Finally, we show in our empirical application that, if we sim-
plify the task and only consider the model’s ability to predict
future transactions, our modeling approach performs at the
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level of traditional ML approaches such as a random forest
(RF) and a deep neural network (DNN; proven to capture non-
linear relationships very well). Our model stands out from
these ML benchmarks in two main ways. Methodologically,
it can be easily be combined with multiple demand specifica-
tions and allows for missing observations in acquisition
characteristics without relying on data imputation. Practically,
our model provides inferences beyond predictions of future
transactions, enabling marketers to get insights about customer
heterogeneity in preferences and in sensitivity to marketing
actions.

Modeling Framework

Model Development
Our modeling framework, the FIM, comprises three main com-
ponents: (1) the demand model, the main outcome of interest to
the firm, which could include customers’ transactions, purchase
volume, and so on; (2) the acquisition model, which captures all
customer outcomes that are observed to the firm at the moment
of acquisition; and (3) the probabilistic model, which links the
underlying customer parameters influencing these two types of
behaviors through hidden traits.

Demand model. We start by assuming a general model for
demand, suitable for different specifications, and parametrized
using individual-level parameters and population-level parame-
ters. Specifically, for customer i at period t, we denote

p(yit|x̃yit, βyi , σy) = f y(yit|x̃yit, βyi , σy)
i ∈ {1, . . . , I}, t ∈ {1, . . . , Ti}, (1)

where I represents the total number of customers, Ti denotes the
number of periods since the customer was acquired, βyi is a
vector containing customer i’s individual-level parameters,
the vector σy contains the parameters that are common across
customers, and x̃yit includes the observed covariates for cus-
tomer i at period t. Finally, f y(·) is the probability density func-
tion/probability mass function (pdf/pmf) for outcome yit; for
example, if the outcome of interest is purchase incidence, we
would specify p(yit = 1) = logit−1[xyit

′ × βyi ].
8

Acquisition model. We denote Ai as the vector of characteristics
that are collected at the moment of acquisition, and aik as the kth

component/behavior (e.g., Did the customer purchase a dis-
counted product on their first transaction?). These acquisition
characteristics are likely to be influenced by individual-level
parameters (e.g., Does this customer have the tendency to buy
on discount?) and by the market conditions at the moment of
acquisition (e.g., Was the company running heavy discounts
during that period?). We account for these effects by modeling
the acquisition characteristics as a probabilistic outcome, rather
than as an input/covariate to the model. Note that we do not
model acquisition per se (i.e., whether the customer is
acquired). Rather, we model the characteristics of the first pur-
chase given that the customer was acquired. This approach is
adequate in this case because the goal of the model is to
allow the firm to manage acquired customers and not to alter
the marketing mix that drives the acquisition process to
change the pool of acquired customers.

Modeling the acquisition characteristics as an output not
only enables us to control for the time-varying factors that
shift demand at the moment of acquisition but also allows for
a flexible modeling specification of the latent traits that over-
come challenges such as redundancy, irrelevance of variables,
and missing data commonly encountered in the firm’s database.
(We discuss these challenges in the “Linking Acquisition and
Future Demand: Deep Probabilistic Model” subsection.)
Specifically, we denote

p(aip|βaip, σa
p, x

a
m(i)τ(i)) = f ap(aip|βaip, σap, xam(i)τ(i))

i ∈ {1, . . . , I}, p ∈ {1, . . . , P}, (2)

where P is the number of different types of behaviors collected
at acquisition, βaip is an individual-level parameter that reflects

tendency to observe such a behavior when customer i is
acquired, σap denotes a vector of parameters that are common

across customers, and xam(i)τ(i) comprises the set of market-level

covariates, with m(i) indicating the market customer i belongs
to and τ(i) denoting the time period at which the customer
was acquired.

The term f ap(·|) is the pdf/pmf of a distribution to model
acquisition behavior p. Note that some of these behaviors will
likely be binary9 (e.g., whether the customer was acquired
online), in which case we specify σap = [bap] and model p as

p(aip = 1) = logit−1[βaip + xam(i)τ(i)
′ × bap]. (3)

For continuous acquisition variables (e.g., total amount spent in
the first transaction) we define σa

p = [bap, σ
a
p] and model p as

p(aip) = N [aip|βaip + xam(i)τ(i)
′ × bap, σ

a
p], (4)

a specification that can be easily adjusted for multivariate out-
comes, as we do with some acquisition variables in our empir-
ical application.

8 The model can easily be adapted to other forms of demand (e.g., continuous
demand, count) and extended to dynamic specifications such as latent attrition
models. For the latter, one could define Equation 1 as a state-space model (e.g.,
a hidden Markov model) with state variable sit and p(yit, sit|yi1:t−1, si1:t−1) =
p(yit|sit) × p(sit|sit−1). We would implement such a model by having two
individual-level vectors, βyqi and βyei , as well as two population-level vectors,
σyq and σye, that would govern transitions among the hidden states and emissions
in a state, respectively. We would substitute Equation 11 for
p(yit,sit|yi1:t−1,si1:t−1,x

y
it,β

y
i ,σy)=p(yit|sit,xyit,βyqi ,σyq)×p(sit|sit−1,x

y
it,β

ye
i ,σye),

where βyi = βyqi βyei
[ ]

and σy = σyqσye
[ ]

are the parameters of the demand
model.

9 Categorical acquisition behaviors can be incorporated easily using a categor-
ical distribution with a softmax link function.
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All of these types of variables are easily incorporated by
adjusting the acquisition model accordingly. We define βai =
βai1 . . . βaiP

[ ]
and σa = σa1 . . . σaP

[ ]
as the full set of

individual- and population-level vectors of acquisition parame-
ters, respectively.

Note that we have only one observation per individual and
behavior. Thus, in theory, having an individual-level parameter
βaip could completely capture the residual variance of aip, which
is not systematically explained by the market-level factors (as in
a regression with individual random effects but only one obser-
vation per individual). However, because we model demand
and acquisition jointly, our model will balance fitting each
acquisition behavior aip with fitting the other acquisition charac-
teristics, as well as fitting demand, with a reduced set of individ-
ual factors or traits. Therefore, the individual-level parameters
βaip will not have full flexibility to accommodate perfectly to
the behavior aip. Rather, these parameters will capture the resid-
ual variance that is correlated with the rest of the acquisition
variables and with the demand model. This remark will
become clearer when we specify the relationship between the
individual-level demand and acquisition parameters, βyi and
βai , as we do in the next section.

Finally, the term xam(i)τ(i) controls for the overallmarketing inten-
sity that a yet-to-be-acquired customer might have been exposed to
in a particular market at the moment of acquisition. For example, if
there is a strong promotional activity in market m in period t, one
would likely observe a higher-than-usual share of discounted prod-
ucts among the acquisition characteristics driven by not only the
customers’ propensity to buy on discount but also by the fact that
the majority of products were discounted.10 Accordingly, we
want to capture this systematic shift in the acquisition characteristics
as a market-related shift and not as a customer-driven shift, and
therefore set bap common across customers.

Linking acquisition and future demand: deep probabilistic
model. We use a DEF component (Ranganath et al. 2015) to
relate demand and acquisition parameters hierarchically,
through hidden layers. We chose this specification because of
its hierarchical nature, which allows the model to identify/
extract individual-level traits that affect both acquisition and
future demand, and because the presence of multiple layers
facilitates the reduction of dimensionality while accommodat-
ing a wide range of possible relationships between acquisition
and demand variables. Furthermore, one important characteris-
tic of DEFs is that the latent variables are distributed according
to distributions that belong to the exponential family (e.g.,
Gaussian, Poisson, Gamma), making them a good candidate
to model the wide range of data types encountered in the
firm’s database. Finally, DEFs also have the flexibility of prob-
abilistic models, allowing them to be easily incorporated in

more complex model structures, as we do in this research.
(For details on DEFs, see Web Appendix B.)

Turning our attention to our modeling challenge, the primary
goal of our model is to infer the individual-level parameters βyi .
Therefore, we specify the DEF component such that the lowest
level captures the individual-level traits that affect both the
acquisition characteristics and future demand. Specifically, we
define

βyi = μy +Wy × z1i , (5)

βai = μa +Wa × z1i , (6)

such that the individual-level parameters, βyi and βai , are a
(deterministic) function of mean parameters, μy and μa; individ-
ual deviations from this mean are a function of the lower-layer
vector z1i and weight matrices Wy and Wa. Similarly as in a
Bayesian PCA model (Bishop 1999), the vector z1i captures
the individual-level traits that jointly explain demand and acqui-
sition behavior. The weight matrices Wy and Wa capture how
each one of these traits manifests in both demand and acquisi-
tion characteristics, respectively.

We assume that each component k of the lower layer, z1ik, is
Gaussian-distributed with mean g(−w1

k
′ × z2i ), and variance 1,

p(z1i,k|z2i , W1) = N [z1i,k|g(−w1
k
′
× z2i ), 1] k ∈ {1, . . . , N1},

(7)

where N1 is the dimension of the lower layer, z2i is the
top-layer vector (of dimension N2 < N1),

11 g(x) =
log {log [1+ exp (x)]} is the log-softplus function (Ranganath
et al. 2015),12 and W1 is the weight matrix that links the
upper and lower layers. The upper layer captures higher-level
traits (resembling the structure of neural networks) while allow-
ing for nonlinear interrelations between the traits in the lower
level z1i . The dependence between the top components and
the lower-layer components is a key aspect of the DEFs that
enables the model to capture interrelations among the lower-
layer components. The dependence between lower layer and
higher layer is regularized through sparse gamma priors on
W1 inducing the model to pick up the relevant correlations
among those traits (see Web Appendix C). Moreover, the non-
linear relationships are captured by the nonlinear link function
g(·), which relates the higher-level traits with the lower-level
traits that manifest in demand and acquisition. Finally, we
model the upper layer using a standard Gaussian distribution,

p(z2i,k) = N [z2i,k|0, 1] k ∈ {1, . . . , N2}. (8)

In summary, we link the individual-level demand and acquisi-
tion parameters using a DEF component of two Gaussian

10 If the model did not control for these market-level conditions and the firm
managed acquisition and retention efforts strategically, the interrelations
between acquisition characteristics and demand parameters obtained by the
model could be spurious in the sense that they could be driven by the firm’s
actions and not by customers’ underlying preferences.

11 In theory, N2 could be larger than N1, but such a model would not necessarily
reflect patterns in data as information would be lost going from the upper layers
to the lower layers of the DEF. Ranganath et al. (2015) only estimate models
with decreasing dimensions of upper layers.
12 In Stan, the softplus function, defined as f (x) = log [1+ exp (x)], can be
computed using log1p_exp(·).
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layers, z1i and z2i . The model could easily accommodate more
layers (e.g., Ranganath et al. [2015] use up to three layers,
L ≤ 3, in their empirical applications).13

Dimensionality of the DEF component. At first glance, the choice
of the layers dimensions N1 and N2 may seem cumbersome. On
the one hand, high values of N1 and N2 increase the computational
burden of the inference procedure, which is not desirable. On the
other hand, a model with low values for N1 and N2 may miss rel-
evant associations that are needed to infer customers’ parameters.
In the extreme, if the number of components of the lower layer,
N1, is set to 1, the model would learn only a single trait to describe
the variation across all parameters, which fails to capture the het-
erogeneity in the demand parameters and their (potentially nonlin-
ear) relationships with acquisition characteristics. Similarly, if the
number of components of the higher layer, N2, is set to 0, the
model would be stripped away from the nonlinear function g(·)
that allows the model to capture nonlinear relationships between
demand and acquisition parameters.

Similar to other latent-space models, one could test all pos-
sible combinations of N1 and N2 (increasing in magnitude) and
choose the optimal values using cross-validation. This exercise
is required when using maximum likelihood estimation, as
more flexibility in a model leads to overfitting following the
classical bias-variance trade-off and, therefore, poor perfor-
mance in holdout samples. However, when using Bayesian
inference, this exercise would be not only computationally
very costly but also unnecessary, provided that adequate
priors such as spike-and-slab or sparse-gamma (Karaletsos
and Rätsch 2015; MacKay 1995; Neal 2012) are used to
induce regularization in the parameters governing the weights
that activate the traits. Using such priors ensures that a trait
manifests in a particular variable only if the improvement in
fit is substantial; otherwise, that trait is “shut down” by the
prior (Ranganath et al. 2015).

Therefore, our approach to specifying the dimensionality of
the model is to set a large-enough number of traits to ensure that
all relevant traits are recovered while using sparse priors to
ensure that the model activates only the relevant traits, thus
avoiding overfitting the data. Specifically, we use sparse
Gamma priors for W1 and hierarchical Gaussian ARD priors
for Wy and Wa, both of which are spike-and-slap-like priors
that have shown to perform well on feature selection (e.g.,
Bishop 2006; Kucukelbir et al. 2017). These priors ensure
that once a trait is “shut down,” adding more traits (i.e., increas-
ing N1 or N2) would just add irrelevant traits with weights all

being close to zero and would not affect the model’s perfor-
mance. (For details about these priors, see Web Appendix C.1.)

The added benefit of inducing regularization through the
priors is that we can look at the posterior estimates of the var-
iances of the weights (Wy, Wa, and W1) to evaluate whether
the number of dimensions (N1 and N2) is sufficient to represent
the data. Examining N1 is straightforward, as the model param-
eter α1 captures the variance of the lower-layer traits. Regarding
N2, while no specific parameter captures the relevance of the
upper-layer traits, we can compute a pseudo-α1m for each
upper trait m using the components of the weight matrix W1

that map to relevant lower-level traits (for details, see Web
Appendix D). Finally, examining the posterior estimates of α1
and pseudo-α1m—and observing that some traits have been
“shut down” by the model—we corroborate whether N1 and
N2 are “large enough” for any specific data set.

These insights are further developed in Web Appendix D.7,
where we explore the dimensionality of the DEF component by
analyzing the results of estimating the FIM on simulated data
for which we know how many traits are needed. There, we
show how the model’s performance remains largely unchanged
by the additional dimensions (on either N1 or N2) after the rel-
evant number of traits are accounted for. We also show how the
posterior estimates of the variances of the weights (α1 and
pseudo-α1m) are diagnostic of relevant and nonrelevant traits.14

In summary, we take a hybrid approach to model selection,
in which we ensure that the number of prespecified dimensions
is large enough—a phenomenon that can be validated from the
model parameters—while we rely on the priors of the model to
ensure regularization.

Bringing it all together. We briefly discuss how each part of the
model contributes to the desired goals and how the FIM com-
pares with alternative approaches to overcome the cold start
problem. In essence, the model comprises a demand and an
acquisition model, whose individual-level parameters are pro-
jected into a lower-dimensional space through a two-layered
DEF component. The lower layer of the DEF captures the rel-
evant associations among the individual-level parameters
while reducing the dimensionality of those vectors. An alterna-
tive approach to link the acquisition and demand parameters
could be through using traditional full HB priors (e.g., multivar-
iate Gaussian). Such an approach would assume that all
individual-level parameters (βyi and βai ) are distributed jointly
according to a flexible multivariate distribution in which param-
eters capture all the potential correlations among the variables.
However, this full hierarchical approach would require the
model to estimate a very high-dimensional correlation matrix,
which can become computationally expensive, especially as
the number of acquisition variables increases. In contrast,

13 We follow the specifications from Ranganath et al. (2015), where the model is
estimated using, at most, three layers (L ≤ 3). In that paper, the model is trained
on two large text corpora (5,900 and 8,000 terms), two matrix factorization tasks
on a movie ratings data set (50,000 users and 17,700 movies), and a click data
set (18,000 users and 20,000 documents). All of these data sets are considerably
larger than our data (both in the simulations and in the empirical application).
Furthermore, Tables 3 and 4 from Ranganath et al. (2015) do not show consis-
tently whether L = 3 is better than L = 2. As a result, we use L = 2 as it is the
smallest configuration that allows for nonlinear relationships.

14 The posterior distribution of α and W1 from real-world data sets would not
display as clear-cut a distinction between traits that are meaningful and those
that are not, compared with our simulation analyses. We return to this point
when discussing the specification of the FIM for our empirical application.
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because the FIM includes ARD priors for the lower layer of the
DEF, the model allows for only “relevant” associations to
emerge, automatically reducing the dimensionality of the
individual-level parameters. This is a desirable feature not
only because the number of acquisition variables could be
large but also because some of the acquisition variables are
likely to be correlated with each other.15

The upper layer of the DEF—and in particular, the nonlinear
link function g(x) that relates the higher-level traits with the
lower-level traits—allows the model to capture a wide range
of relationships, linear and nonlinear, among the variables of
interests. A simpler specification of the FIM would be one
that does not incorporate the second layer and therefore
imposes linear relationships among the individual parameters.
Such a nested version of the FIM would be equivalent to a
“supervised” factor analysis or Bayesian PCA where the
latent traits are extracted from the acquisition variables as
well as from the demand model. The limitation of such a
(nested) approach is that the model would lose its accuracy in
forming first impressions the moment the assumption of linear-
ity does not hold, either because acquisition variables relate to
demand parameters in a nonlinear way or when two (or more)
acquisition variables interact in their relationship with the
demand parameters. As we show in the “Model Performance”
subsection, our FIM specification (which includes the second
layer) captures several forms of relationships (including
linear, interaction effects, and maximum function) without the
need to specify those relationships a priori. This is a desirable
property of the model because managers, researchers, and
data scientists generally do not know the exact form of the rela-
tionships among the variables of interest.

Finally, a different approach to overcome the cold start
problem could be to simply specify the individual-level
demand parameters (βyi ) as a direct function of the acquisition
variables (Ay

i ). Such a specification would resemble a typical
demand model with interactions, or a multilevel (hierarchical)
model in which βyi are a function of the observed Ai and
some population distribution (Allenby and Rossi 1998;
Ansari and Mela 2003; Chan, Wu, and Xie 2011; Rossi,
McCulloch, and Allenby 1996). While a linear model is attrac-
tive for its simplicity and ease of interpretation, if the underly-
ing relationships between the acquisition variables are not linear
(or do not follow the specified relationship, due to variable
transformation), the model will fail at inferring individual-level
demand parameters for newly acquired customers with a certain

level of accuracy. Although nonlinearities could be captured by
higher-order interactions, such an approach becomes intractable
when the parameter space for the acquisition variables
increases. In addition, specifying acquisition characteristics as
covariates would require data imputation or data augmentation
techniques to handle missing observations. In contrast, our
modeling framework does not require those types of techniques
because we model acquisition characteristics as an outcome.

In conclusion, Figure 3 shows the graphical model for the
FIM, connecting all the individual components. We propose a
model of demand and acquisition characteristics where the
individual-level parameters of each of these submodels are pro-
jected into a lower-dimension space via a DEF component. The
specification of the demand submodel is general such that the
modeling framework can be applied to a wide range of business
contexts. The submodel for acquisition characteristics enables
the model to control for market conditions or firm-initiated
actions that can potentially shift the type of customers that are
acquired over time. If these shifts were not captured, the
model would not be able to differentiate market conditions
from customers’ underlying preferences. Regarding the DEF
component, there are three main benefits of using a two-layered
DEF to connect both types of individual-level parameters. First,
the model provides dimensionality reduction, avoiding the
curse of redundancy and irrelevance of acquisition variables.
Second, the model allows for flexible relationships (e.g., non-
linear relationships) among the model components. Third, the
model can incorporate acquisition characteristics with missing
observations, as these are modeled as outcomes that are easily
handled using a Bayesian estimation framework. These benefits
will become clearer in the “Model Performance” subsection and
“Empirical Application” section, when we compare the predic-
tive accuracy of the FIM with that of several alternative
specifications.

Estimation and Identification
We estimate the model using full Bayesian statistical inference
with Markov chain Monte Carlo sampling. We sample the
parameters from the posterior distribution, which is propor-
tional to the joint,16

p({z1i , z
2
i }

I
i = 1, W

y, Wa, W1, μy, μa, σy, σa, ba, {yi1:T, Ai}i)

=
∏I
i = 1

∏Ti

t = 1

p(yit|xyit, z1i , Wy, μy, σy)

[ ]

×
∏I
i = 1

p(Ai|xai , z1i , Wa, μa, σa, ba)

[ ]
·

∏I
i = 1

p(z1i |z2i , W1)

[ ]

×
∏I
i = 1

p(z2i )

[ ]
× p(Wy, Wa, W1, μy, μa, σy, σa, ba). (9)

15 An alternative but similar specification for the model could be a two-step
approach that first reduces dimensionality among the acquisition variables
(i.e., connecting z1i to βai ) and then connects those factors with future
demand. We choose to connect the lower level of the DEF model with both
components jointly (1) to be robust to the possibility that the residual variance
of the acquisition variables that is not explained by the main factors in the first
step is predictive of demand behavior and (2) to inform the choice of factors that
are predictive of demand behavior, as in supervised topic models (McAuliffe
and Blei 2008) and, therefore, to overcome redundancy and irrelevance of
acquisition variables simultaneously.

16 All details about the prior distribution p(Wy, Wa, W1, μy, μa, σy, σa, ba) are
presented in Web Appendix C.2.
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In particular, we use the “No U-Turn Sampling” Hamiltonian
Monte Carlo algorithm implemented in the Stan probabilistic
programming language (Carpenter et al. 2016; Hoffman and
Gelman 2014), which is freely available and facilitates the
use of this model among researchers and practitioners.17

Regarding the identification of the model parameters, the
demand and acquisition parameters (βyi , σy, β

a
i and σa) are iden-

tified, provided that the functional forms described in Equations
1 and 2 are well specified. In contrast, not every single param-
eter of the DEF component is fully identified.

Lower layer. The parameters that link the lower layer of the DEF
with βyi and βai are identified up to a rotation, similar to a tradi-
tional factor analysis model. Specifically, the scales of the
lower-layer trait (z1i ) and weights (wy and wa) are identified
through the priors scales. Small rotations are identified by the
sparsity of the ARD priors (for details, see Web Appendix C)
—these priors favor the activation of fewer traits, avoiding
the rotation of a large trait into smaller ones. Orthogonal rota-
tions are not fully identified due to possible sign change in
traits and label switching.18 However, we can obtain behavioral
insights from the lower layer of model (e.g., what trait[s] are
most predictive of specific behaviors) by carefully rotating the
lower-layer traits and weights parameters across draws to

maintain a consistent interpretation of these parameters
(for details, see Web Appendix E).

Top layer. The top layer of the DEF and the parameters that link
the top and lower layer are not identified. This is similar to
DNNs, in which the lower layer is a combination of the
values of the upper layer and the weights linking them. In our
model specification, this translates to the value of the top
layer (z2i ) not being identified as different combinations of z2i
and w1 could generate the same value for z1i . Most importantly,
this lack of identification in the DEF component does not pre-
clude the model from uniquely identifying the individual-level
demand parameters βyi (as corroborated in the “Model
Performance” and “Empirical Application” sections), which is
the main goal when overcoming the cold start problem.

Model Inferences for Newly Acquired Customers
Recall that the main purpose of the model is to assist firms
in the task of making inferences about how individual cus-
tomers will behave in the future (e.g., how they will
respond to marketing interventions), based on the observed
behaviors at the moment of acquisition. Intuitively, that
process would works as follows: a new customer is
acquired and the firm observes their behaviors at the
moment of acquisition. At that point, and given the firms’
prior knowledge of the market (i.e., the model parameters
and market conditions), the firm makes an inference about
that particular customer’s latent traits, which are then

Figure 3. Graphical model of first impressions.

17 The code is available from the authors.
18 Note that the lower traits themselves are not orthogonal by design, as they are
related through the upper layer.
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used to infer the individual-level parameters that will deter-
mine their demand (e.g., likelihood that the customer will
purchase in the future, their responsiveness to marketing
interventions).

More formally, we want to infer p(βyj |Aj, D) for customer j
who was not in the training sample, for whom we observe

acquisition characteristics Aj, and where D = {yi1:Ti
, Ai}

I
i = 1

comprises the calibration data. Denoting Θ =
{μy, μa, Wy, Wa, W1, σy, σa, ba} the population parameters
and Zj = {z1j , z

2
j }, we can write p(β

y
j |Aj, D) by both integrating

out over the parameters Θ and Zj and using the factorization of
the joint distribution provided in Equation 9. That is,

p(βyj |Aj, D)=
∫
p(βyj , Zj, Θ|Aj, D) × dZj × dΘ

=
∫
p(βyj |Zj, Θ, Aj) × p(Zj|Θ, Aj) × p(Θ|Aj, D) × dZj × dΘ

=
∫
θ

∫
Zj

p(βyj |Zj, Θ, Aj) × p(Zj|Θ, Aj) × dZj

[ ]
× p(Θ|Aj, D) × dΘ

≈
∫
θ

∫
Zj

p(βyj |Zj, Θ, Aj) × p(Zj|Θ, Aj) × dZj

[ ]
× p(Θ|D) × dΘ.

(10)

The last approximation suggests that if the number of customers
in the calibration data is large, we can proxy the posterior of the
population parameter with focal customer j by the posterior dis-
tribution obtained without the focal customer j. In other words,
adding one more customer would not significantly change the
posterior of the population parameters. This approximation is
very useful in practice because it allows us to draw from
p(Θ|D) using the calibration sample and draw the individual
parameters of the focal customer j once this customer has
been acquired, without the need to reestimate the model to
incorporate Aj. (For a description of the corresponding algo-
rithm, see Web Appendix F.)

Model Performance
Before applying the new modeling framework to the empirical
context, we need to demonstrate the model’s accuracy at infer-
ring the individual-level parameters for newly acquired custom-
ers. Because individual-level parameters are, by definition,
unobserved, we perform this task using a simulation analysis
in which we know the exact values of βyj and can therefore eval-
uate the model’s ability to recover the true parameters using
Equation 10. Unlike other simulation exercises, the goal of
this analysis is not to confirm that the model can recover the
(population) parameters. Rather, we use simulations to demon-
strate that the proposed model is able to recover customers’
individual-level parameters accurately, even when the data-
generating process for those individual-level parameters is not
known and may differ from the modeling assumptions. In
reality, marketers (and researchers) never know the exact rela-
tionship between acquisition characteristics and future
demand parameters; therefore, having a flexible model that per-
forms well in a variety of contexts is of critical importance. (We

briefly describe the main aspects of the simulation design while
including all details in Web Appendix D.)

We generate three scenarios for the underlying relationship
between acquisition variables and demand parameters. In
each scenario, customers are “endowed” with a set of demand
parameters that follow a specific relationship with their
observed acquisition characteristics, namely (1) linear, (2) qua-
dratic/interactions (allowing the relationship between one
acquisition variable and the demand parameters to vary depend-
ing on the value of other acquisition characteristics), and (3)
positive part (forcing the relationship between acquisition char-
acteristics and demand parameters to be zero for low values of
the acquisition characteristic). Given those individual-level
demand parameters, customer transaction history is simulated
for 2,200 customers. We use 2,000 customers to estimate the
model and the remaining 200 customers to evaluate the accu-
racy of the model at inferring demand parameters for newly
acquired customers. Specifically, only using the acquisition
characteristics for these 200 customers, we use the model to
infer their individual-level demand parameters and compare
those estimates with the true values.

We compare the performance of the FIM with that of three
other specifications: (1) a HB-linear model, where individual
demand parameters are specified as a linear function of the
acquisition characteristics (this corresponds to the simulated
data under the linear scenario); (2) a full hierarchical model,
where demand and acquisition parameters are jointly distribu-
ted according to a multivariate Gaussian distribution with a
flexible covariance matrix; and (3) a Bayesian PCA model.
As discussed in the “Bringing It All Together” subsection, the
Bayesian PCA model is a nested specification of the proposed
FIM (in which the second layer does not exist), whereas the
full hierarchical model and HB-linear specifications reflect
alternative (simpler) ways in which previous research has
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modeled these types of data. To measure the accuracy of each
model, we compare the predicted posterior mean with the
actual values for the demand parameters (both the intercept
and the effect of the covariates) of the 200 out-of-sample cus-
tomers. Table 1 includes the results for all models across all sce-
narios.19 We also include the results of estimating an HB
demand-only model in which acquisition characteristics are
not incorporated to have a reference of how much error one
would obtain by simply predicting the population mean.

First, under a true linear relationship (Scenario 1), the FIM
predicts the individual parameters as accurately as the bench-
mark models. The root mean square error (RMSE) of the FIM
is comparable to the benchmark models, and the R-squared is
equal to the benchmark models. This result verifies that the
FIM does not overfit the training data or, in other words, that
the additional model complexity—even when not needed—
does not hurt the accuracy of predictions for customers
outside the calibration sample. Second, when the relationship
among the model parameters is not perfectly linear (Scenarios
2 and 3), the FIM significantly outperforms the benchmark
models in all dimensions. In particular, the R-squared of the
FIM is higher than that of the benchmarks, demonstrating that
the model is superior at sorting customers on the basis of
their demand parameters. Moreover, the RMSE for the FIM is
substantially lower than that of the benchmarks, indicating
that the proposed model predicts the exact magnitude of cus-
tomer parameters (e.g., purchase probability, sensitivity to mar-
keting actions) more accurately than any of the benchmarks.
These results hold when we examine the model “at scale,”
when we significantly increase the amount of data collected
by the firm and also add standard regularization techniques
(e.g., LASSO) to the benchmark models. (For details, see
Web Appendix D.8.)

To help understand what drives the greater accuracy of these
predictions, we further explore the results for Scenario 3 (when
the true relationship is positive part). The first row of Figure 4
shows the scatter plot of the predicted (β̂yj1) versus actual (β

y
j1)

individual demand intercepts from each model, which displays
the superior performance of the FIM, as detailed in Table 1. The
second row of Figure 4 shows the predicted and actual demand
intercepts as function of the first acquisition variable for each
model. The blue dots show the true relationship between
these two variables (i.e., positive part), whereas the red dots cor-
respond to the relationship estimated by the model. These plots
evidence that the FIM can better recover the positive-part rela-
tionship between the acquisition variables and the demand
parameters.20

Finally, to better understand which aspect of the model is
responsible for this accuracy of predictions, we compare the
BPCA and the FIM model more closely, allowing both specifi-
cations to vary the dimensionality of their latent components.
Such an analysis indicates that the presence of the second
layer of the DEF component is contributing significantly to
the improvement in accuracy for scenarios where the relation-
ship is not linear. The results suggest that incorporating that
second layer, even if specified with low dimensionality,
allows the model to flexibly capture the nonlinear relationship
between acquisition and demand parameters. (See full details
in Web Appendix D.6.)

In summary, these analyses demonstrate the effectiveness of
the FIM at overcoming the cold start problem. We have shown
that the FIM can accurately infer customer parameters using
only acquisition data, even when such a model is not used to

Table 1. Accuracy of Predictions of Demand Parameters for (Out-of-Sample) Customers.

Scenario 1 Scenario 2 Scenario 3

Linear Quadratic/Interactions Positive Part

R-Squared RMSE R-Squared RMSE R-Squared RMSE

Intercept
HB demand-only .001 6.703 .020 7.624 .007 8.514

Linear HB .988 .734 .711 4.113 .783 4.056

Full hierarchical .988 .735 .704 4.164 .781 4.091

Bayesian PCA .988 .736 .706 4.484 .780 4.329

FIM .988 .738 .888 2.661 .928 2.987
Effect of Covariates

HB demand-only .005 2.562 .004 4.589 .001 4.604

Linear HB .986 .303 .258 3.969 .736 2.363

Full hierarchical .986 .303 .258 3.970 .733 2.378

Bayesian PCA .986 .301 .245 4.364 .738 2.752

FIM .986 .302 .515 3.229 .745 2.325

19 See Web Appendix D.3 for details about the specification of the benchmark
models and Web Appendix D.4 for details on the performance metrics.

20 Note that the model performance relies empirically on the predictive power of
the acquisition variables on future behavior. In our simulation analyses, we
tested the model performance when adding acquisition characteristics that
were unrelated to future behavior and found no evidence of model overfit.
Nevertheless, we did not explore whether the model would overfit when there
is no predictive power among all acquisition variables.
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simulate the true parameters. While the benchmark models fail
to form accurate inferences of newly acquired customers when
the underlying relationships among variables are not perfectly
linear, the FIM is flexible enough to reasonably recover those
parameters. This latter point is of great importance because,
in reality, the researcher/analyst never knows the underlying
relationships among variables. Therefore, having a flexible
model able to accommodate multiple forms of relationships is
crucial to accurately infer customers’ parameters.

Empirical Application

Data and Model Specification
Our focal firm is an international retailer that sells its own brand
of beauty and cosmetic products (e.g., skincare, fragrance,
haircare).21 Customers can purchase the company’s products
only via owned stores, either offline (the company owns
brick-and-mortar stores across many countries) or online
(with one online store per country). Although the company is
present in many countries, most marketing functions (e.g., pro-
motional campaigns, product introductions) are centralized, and
therefore operations are very consistent across markets. Like
most other companies, the focal firm records the transactions

of all individual customers, along with other information
about the CRM activities, such as direct marketing campaigns
and email marketing activities.

Transactional data. We obtain individual-level transactions for
registered customers in the six major markets—the United
States, the United Kingdom, Germany, France, Italy, and
Spain. We observe customers from the moment they make
their first purchase (starting in November 2010). At the point
of purchase, customers are asked to provide their name,
email, and address so that they can receive promotions and
other marketing communications from the firm. We track
their behavior up to four years after that date (ending in
November 2014). We have 13, 473 customers, with a
minimum of 3 and a maximum of 51 periods of individual
observations, resulting in 287, 584 observations.22 During this
time, we observe a total of 15, 985 repeated transactions (i.e.,
the average number of transactions per customer is 2.19, or
1.19 repeated transactions). In addition to the behavior of the
13, 473 registered customers, we collect data on all purchases
made by “anonymous” customers in all six markets (i.e.,
those who never shared their identity with the firm). Although

Figure 4. Visualization of model performance for Scenario 3: positive-part individual results of intercept.
Notes: The first row shows the scatter plot of the individual true versus posterior mean for each model. The second row shows the individual posterior mean

(red) and true (blue) as a function of acquisition variable 1 (A1).

21 The authors thank the Wharton Customer Analytics Initiative (WCAI) for
providing this data set.

22 A period corresponds to exactly 28 days. We do not use a calendar month as
our unit of analysis, because we want to have the same number of days in all
periods.
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their behavior is not included in our main analysis (the firm can
neither track their future behavior nor communicate with them
via email or mail), we use these anonymous transactional data
to extract product-level information that will be used to
augment the cold start data and to control for shocks in distribu-
tion channels that affect the timing of the introduction of new
products in specific markets.

We specify demand as a logistic regression where yit = 1 if
customer i transacts at period t, and yit = 0 otherwise.
Specifically, f y(·|) from Equation 1 is defined as

p(yit = 1) = logit−1[xyit
′ × βyi + δrec × Recencyit + αm], (11)

where we control for latent attrition using recency as a covariate
(Neslin et al. 2013)23 and include market-level fixed effects to
capture differences in purchase frequencies across countries
(i.e., in this case x̃yit = [xyit, Recencyit] and σy = {δrec,
α1, . . . , αM−1}, with M representing the number of markets).

Marketing actions. The firm regularly sends emails and direct
marketing to registered customers. The content of these promo-
tional activities is set globally (i.e., the same promotional mate-
rials are used across countries, translated to the local language),
though their intensity is set by market (e.g., the United States
tends to send more emails than France).24 In addition to promo-
tional activity, the company uses product innovation as a mar-
keting tool. Like other major brands in this category, the focal
retailer regularly adds extensions and/or replacements to their
product lines. The sense among the company managers is that
such an activity not only helps in acquiring new customers
but also keeps current customers more engaged with the
brand. When the company introduces a new product, it does
so in all markets simultaneously. There is, however, some var-
iation across markets regarding when new products were intro-
duced. Conversations with the company confirmed that such
variation is due to differences (and random shocks) in the
local distribution channels.

Although direct marketing and email marketing are observed
at the individual level (we denote them by DM and Email,
respectively), the availability of new products is not observed
at a granular level. We create a new product introduction vari-
able (Introd) by combining point-of-sale data (at the SKU level)
with a firm-provided SKU list of new products. Specifically, we
obtain the list of all new products introduced during the period
of our study. We identify the SKUs for all products in that list
and infer availability in each market from all purchases
observed in that particular market (including all 304,497 trans-
actions from “anonymous” customers). We assume that a new

product was introduced in a market at the time the first unit
of that SKU was sold. We then create a period-/market-level
variable representing the number of new products that were
introduced in each market in each time period.

Table 2 shows the summary statistics for the marketing
actions summarized across observations and across individuals.
For the latter, we summarize individual average, individual
standard deviation, and the individual coefficient of variation.
The variation in these data is very rich both across and within
customers.

We define the vector of demand time-variant covariates xyit as
the intercept, firm-initiated marketing actions, and seasonal
factors such as holiday periods,

xy′it = 1, Emailit, DMit, Introdm(i)t, Seasonm(i)t
[ ]′,

(12)

where Email, DM, and Introd are the marketing actions and
Season is a dummy variable that equals 1 for the winter
holiday and 0 otherwise.25

Given the business nature of our application, the information
provided by the firm about how the managers conduct their
marketing actions, the rich longitudinal and cross-sectional var-
iation in our data (Table 2), and our model specification, we
argue that the potential endogenous nature of the marketing
actions is not a main concern in this research (for details, see
Web Appendix G.1). Nevertheless, in situations where these
conditions do not hold (due to different strategic behavior by
the firm or for data limitations), the demand model should be
adjusted to account for the firm’s targeting decisions. Given

Table 2. Summary of Time-Varying Marketing Actions.

Marketing
Action Statistic Mean SD N

Email Across observations 3.267 4.686 287,584

Individual average 4.272 3.612 13,473

Individual SD 3.404 1.790 13,473

Individual coefficient

of variation

1.425 1.082 13,336

Direct

marketing

Across observations 1.006 1.889 287,584

Individual average 1.329 1.018 13,473

Individual SD 1.731 .769 13,473

Individual coefficient

of variation

2.031 1.205 13,455

Products

introduced

Across observations .923 1.264 287,584

Individual average .657 .532 13,473

Individual SD .755 .534 13,473

Individual coefficient

of variation

1.354 .478 11,927

23 As discussed in the “Demand Model” subsection, the proposed FIM can
accommodate different demand specifications such as “buy-till-you-die”
models or hiddenMarkov models. For our empirical application, we corroborate
that adding recency is sufficient to control for latent attrition, which reduces the
estimation time when compared with adding a probabilistic latent absorbing
state (e.g., Chan, Wu and Xie 2011).
24 We only observe email activity sent after September 2012. Therefore, we only
consider customers acquired after that date for the estimation of the model.

25 We compute this variable for each market separately because the exact calen-
dar time for the holiday period varies across countries. For example, in the
United States, the holiday “shopping” period covers Thanksgiving week until
the last week of December (i.e., the end of Christmas), whereas in Spain the
only holiday season corresponds to Christmas, which starts at the end of
December and ends after the first week of January.
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the flexibility of our modeling framework, those adjustments
would merely involve extending the demand model to capture
unobserved shocks between firm’s actions and individual-level
responsiveness (Manchanda, Rossi, and Chintagunta 2004) or
adding correlations between firm decisions and unobserved
demand shocks through copulas (Park and Gupta 2012),
depending on how these actions are determined by the firm.
Those changes would only affect the demand (sub)model and
not the overall specification of the FIM.

(Augmented) acquisition characteristics. Transaction characteris-
tics: We compute Avg.Price as the total amount (in euros) of
the ticket divided by the number of units bought at the first
transaction; Quantity is the total number of units bought at
the first transaction; Amount is the total amount (in euros) of
the ticket at the first transaction26; Discount is a dummy varia-
ble that equals 1 if the customer received discounts in the first
transaction, and 0 otherwise; and Online is a dummy variable
that equals 1 if the first transaction was made online, and 0 oth-
erwise. We also create a Holiday dummy variable that equals 1
if customer made their first transaction during the winter
holiday period and 0 otherwise (analogously as the time-
varying covariate Season).

Product characteristics: Directly from the observed product
characteristics, we create a ten-dimensional vector that indicates
whether the basket includes a product from a Category, includ-
ing Body Care, Face Care, Hair Care, Toiletries, and so on, as
defined by the focal company. Moreover, given that product
innovation is very important in markets of beauty and cosmetic
products, we create a NewProduct dummy variable that equals
1 if the customer bought a product that had been introduced in
the 30 days prior to the purchase, and 0 otherwise. We also
include the average Size of the packages in the basket, opera-
tionalized as relative size with respect to other products in the
same subcategory, and a Travel dummy that equals 1 if the
basket includes products on travel size, and 0 otherwise.

Latent representation of shopping baskets:As described pre-
viously, we characterize each customer’s first purchase by com-
puting moments of the products included in their shopping
basket. The resulting product embeddings in our empirical
application is a six-dimensional vector that represents the posi-
tion of each product in a similarity space, which we call the
“nature” of a product. Once those product embeddings are
created, we create BasketNature, computed as the “average”
product purchased, and BasketDispersion, computed as the
element-wise standard deviation across products in the same
basket, with missing values when the first purchase includes
only one product.27

Formally, the vector of acquisition characteristics is speci-
fied as follows:

Ai= [Avg.Pricei, Quantityi, Amounti, Discounti, Onlinei,

Holidayi, Categoryi, NewProducti, Traveli, Sizei,

BasketNaturei, BasketDispersioni].

The variation in the acquisition data is very rich (Table 3). For
example, 22% of the sample was acquired over the holiday
period, 30% of first transactions included at least one dis-
counted product, and 35% included products in the face care
category. The standard deviations of price, number of items
purchased, amount, relative size, and basket dispersion are
large, reflecting the heterogeneous behavior of customers
across the six markets. Note that several of these acquisition
characteristics are missing for some customers—for example,
products for which the package size could not be retrieved
from the data have missing Package Size observations, baskets
that include single items have missing BasketDispersion observa-
tions, and so forth. These missing observations do not present a
challenge in the estimation of the FIM (i.e., there is no need to
eliminate observations or to input population averages) because
of the way the acquisition characteristics enter the probabilistic
model in Equation 2.

Consistent with the challenges mentioned in the “Modeling
Challenges” subsection, some acquisition characteristics are
correlated with each other (Table 4)—for example, customers
who purchased many items paid less per item (correlation =
−.330)—and those who bought on discount also paid slightly
less than those who paid full price when they were first
acquired (correlation = −.200). Online first purchases tend
to include more items in the basket (correlation = .411) and
contain products in the face care category (correlation =
.483). While it is to be expected that some of these variables
will be correlated, as they capture different behaviors incurred
by the same customer, some of these correlations might also
arise from the market conditions at the moment when a cus-
tomer was acquired (e.g., if the company introduces all of its
new products during the holiday, customers with Holiday =
1 will also have NewProduct = 1, and vice versa).28 As dis-
cussed in the “Acquisition Model” subsection, our modeling
framework separates these two types of correlations by incor-
porating firm’s market-level actions, xam(i)τ(i), that potentially
affect these acquisition behaviors.

Specifically, we include market-level CRM activities such as
number of emails (MarketEmail), direct marketing actions
(MarketDM),29 and the number of products introduced by the

26 We transform the variables Avg.Price and Amount using a log function and
transform the Quantity using a log-log function.
27 In addition, if a customer’s first transaction includes only SKUs of products
that were not purchased in any of the anonymous customers’ transactions used
for generating the product embeddings, then both BasketNature and
BasketDispersion will have missing values as well.

28 If not accounted for, the latter case could be potentially problematic because
the model would not be able to separate the predictive power of being a “holiday
customer” from that of being a “new product customer.” And, if the company
were to change its policy in the future (e.g., introducing new products in
June), our model inferences about just-acquired customers could be misleading.
29 We calculate market-level number of emails and DMs as the average number
of emails and DMs sent in a particular period to customers in that market. Note
that the focal customer i cannot receive these marketing communications before
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firm (Introd) in that period.30 That is,

xam(i)τ(i)= MarketEmailm(i)τ(i), MarketDMm(i)τ(i), Introdm(i)τ(i)
[ ]′

.

Because the span of the acquisition data covers 4 years from 6
different markets, we have substantial variation (longitudinal
and cross-sectional) to separate any firm-related systematic rela-
tionship among acquisition characteristics from correlations
induced by customers’ underlying preferences.

Estimation
We apply our modelling framework to this retail context to
show how a firm can make meaningful inferences about
newly acquired customers. The firm would do so by calibrating
the FIM using historical data from its existing customers and
making inferences about newly acquired customers for whom
only the acquisition characteristics are observed.

We restrict our analysis to periods in which the firm was
engaging in marketing activities, which span from October
2012 to November 2014 (N = 8,985 customers). To mimic
the problem faced by the firm, we estimate the model with
the transactional behavior of (existing) customers up to April
2014 and use those estimates to form first impressions for cus-
tomers acquired after April 2014, using only their acquisition
variables.31 Specifically, we split all customers into three
groups: Training, Validation, and Test. We randomly select
customers who were acquired before April 2014 to use in our

Table 3. Summary Statistics of Selected Acquisition Characteristics.

Variable Description Mean SD N

Avg. price (€) Average price per unit, in euros 11.642 10.237 13,473

Quantity Total number of units purchased 4.934 5.298 13,473

Amount (€) Total ticket amount, in euros 39.567 38.433 13,473

Holiday Whether customer was acquired during the holiday season .220 — 13,473

Discount Whether discounts were applied in transaction .302 — 13,473

Online Whether the transaction was online .176 — 13,473

New product Whether a new product was purchased .431 — 13,473

Travel Whether a travel-size product was purchased .397 — 13,473

Package size Average size of products (relative to its subcategory) 1.080 .701 13,352

Avg. BasketDispersion Average basket dispersion across all dimensions 1.338 .660 9,928

Face Care Whether a product in the Face Care category was purchased .352 — 13,473

Hair Care Whether a product in the Hair Care category was purchased .120 — 13,473

Notes: For the sake of simplicity, we omit the descriptive statistics for the six BasketNature variables and eight remaining product categories. We also aggregate the

BasketDispersion variables by averaging across all dimensions of the word2vec representations. Missing values correspond to first purchases that include products

with missing information (and, in the case of BasketDispersion, those with only one item in the basket).

Table 4. Correlations Among Selected Acquisition Characteristics.

Avg. Price Quantity Amount Size Holiday Discount Online New Product Travel Face care

Avg. price 1.000

Quantity −.330
Amount .251 .594

Size .396 −.238 .038

Holiday −.082 .179 .090 −.027
Discount −.200 .285 .184 −.160 .055

Online −.241 .411 .168 −.097 .056 −.049
New product −.036 .250 .248 −.055 .068 .066 .106

Travel −.350 .347 .122 −.348 .088 .289 .009 .149

Face care −.066 .366 .298 −.113 .051 .096 .483 .177 .083

Hair care −.124 .261 .121 −.091 −.016 .084 .266 .139 .063 .155

Note: We dropped missing values in pairwise computations only.

being acquired; thus, these variables are computed using the set of existing cus-
tomers at that time.
30 Note that the number of products introduced in a particular period enters both
the demand and the acquisition model (xyit and x

a
m(i)τ(i), respectively). This is not

problematic because the objective is different on each component. In the
demand model, this variable captures the effect of introducing products at a par-
ticular period on the purchasing behavior of an existing customer for that par-
ticular period. In the acquisition model, this variable serves as a control for
extracting the component of the acquisition variables that reflects individuals’
traits. For example, the fact that a customer bought a new product on their
first transaction could be a signal of customer traits and/or a consequence of
more products being introduced by the firm when the customer was acquired.

31 We chose this date to reasonably balance the amount of data we need to esti-
mate the model, with the sample size remaining for the prediction analysis.
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Training sample (N = 5, 000) and use their behavior prior to
April 2014 to train the models. Regarding the dimensionality
of the FIM, and following the approach discussed in
Dimensionality of the DEF component, we find that N1 = 13
and N2 = 5 are enough to recover the meaningful associations
present in our data. The posterior distribution of α is concen-
trated close to the origin for a set of lower-level traits, indicating
that N1 = 13 is high enough to capture the traits that directly
affect the demand and acquisition parameters. Similarly, the
posterior distribution of the computed pseudo-α shows that at
least one upper-level trait is not relevant for impacting the
lower-level traits, suggesting that N2 = 5 is enough to capture
the upper-level traits.32 (For further details, see Web
Appendix G.2.)

We also select another set of customers acquired during the
same period for our Validation sample, which we will use to
compare the predictive accuracy of the models at estimating
demand (N = 1, 000). Finally, we use the remaining customers
acquired before April 2014 and combine them with those
acquired after April 2014 to form our Test sample, which we
will use to identify valuable customers and to inform our target-
ing policy (N = 2, 985).33

Similarly as in the “Model Performance” subsection, we
estimate all models (linear HB, Bayesian PCA, and FIM)
using No U-Turn Sampling in Stan.34 We also estimate a
set of probability models (also estimated with Stan) that
have been proposed in the literature to model these types of
data because they explicitly account for latent attrition (e.g.,
Chan, Wu, and Xie 2011; Schweidel and Knox 2013;
Schweidel, Park, and Jamal 2014). For completeness, we
test multiple specifications varying the inclusion of time-
varying covariates in the transaction process and time-
invariant covariates in the attrition process, namely (1)
linear model with marketing actions+ logistic attrition
process (without acquisition covariates), (2) linear model
(without marketing actions)+ logistic attrition with acquisi-
tion covariates, and (3) linear model with marketing actions
+ logistic attrition with acquisition covariates (see details in
Web Appendix G.3). Finally, we estimate two ML methods
widely used for supervised learning (i.e., whether a customer
transacts)—namely, a feed-forward DNN and an RF. Both
ML models include time-varying covariates, acquisition char-
acteristics, and market-conditions at the moment of acquisi-
tion. (For details about the packages used for estimation of
the ML methods and related model specifications, see Web
Appendix G.4.)

Results
Parameter estimates. Table 5 shows the population mean and
standard deviation of each of the demand parameters.
Customers in the sample have a low propensity to transact,
on average (βyintercept = −3.110). Email and direct marketing
communications have a positive average impact on purchase
(βyemail = .111 and βydm = .121, respectively), whereas product
introduction effects are not significant, on average. Finally, cus-
tomers return to transact more on holiday periods
(βyseason = .361). Subsequently, we explore the observed hetero-
geneity in these components (captured by the FIM) as well as
the implications for the managers of the firm.

Another set of interpretable parameters of the FIM are the
posterior estimates of the lower layer of the DEF component.
Properly rotated, these parameters could be used to interpret
the latent factors that connect acquisition characteristics and
demand parameters. For the sake of brevity, in this section
we focus on the model performance at solving the cold start
problem and include those interpretable results in Web
Appendix G.5.

Comparison with the benchmark models. Unlike the simulation
exercise, in the empirical application we do not know the true
value of the demand parameters (βyi ) and therefore have to
rely on the model predictions to evaluate the quality of the
model. We compare the (out-of-sample) accuracy of the FIM
predictions with those of the benchmark models in Table 6.35

(For completeness, the performance of all models on the
Training sample is presented in Web Appendix G.6.) The
FIM outperforms all the nested and latent attrition benchmarks
in out-of-sample fit (i.e., log-like) as well as at making

Table 5. Parameter Estimates of FIM.

Demand Parameter

Posterior Statistics

Post.
Mean

Post.
SD

PCI
2.5%

PCI
97.5%

Intercept Pop. mean −3.110 .051 −3.205 −3.024
Pop. SD .364 .086 .245 .549

Email Pop. mean .111 .026 .061 .163

Pop. SD .167 .031 .110 .235

DM Pop. mean .121 .028 .067 .174

Pop. SD .137 .023 .094 .182

Product

introductions

Pop. mean −.058 .048 −.164 .024

Pop. SD .213 .046 .128 .310

Season Pop. mean .361 .072 .235 .502

Pop. SD .362 .065 .245 .505

32 For robustness, we estimate another FIM specification with N2 = 2 instead,
and we find that all upper traits are relevant, suggesting that N2 = 2 may not be
enough to capture the nonlinear relationships present in the data.
33 Ideally, we would like to test our targeting policies using only customers
acquired after the calibration period. However, given the low incidence of pur-
chases in this empirical context, we would not observe such a group of custom-
ers for a long-enough period to have reliable data to validate our predictions.
34 We do not show the full hierarchical model given its similar performance to
the linear-HB specification.

35 Arguably, one should test these performance metrics on a different set of cus-
tomers for which we selected the FIM specification. However, most FIM spec-
ifications deliver a similar performance on this validation sample and, thus,
would perform similarly well against the benchmark models. More importantly,
the main performance test of the FIM is whether it can better identify valuable
customers, which we perform using the test sample in the “Overcoming the
Cold Start Problem” subsection.
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predictions at the observation, customer, and period levels.
These results not only corroborate the results presented in the
“Model Performance” subsection, now in a real-world setting,
but also indicate that in this application, the traditional CLV
models that explicitly model attrition do not outperform the
linear HB model with recency, even when including the acqui-
sition variables as time-invariant covariates (e.g., Chan, Wu,
and Xie 2011). Not surprisingly, the DNN method provides
the most accurate results when looking at observation-level
RMSEs, with the FIM performing as well as the RF.
However, when looking at customer- and period-level
RMSEs, the FIM outperforms all of the models.

These analyses demonstrate that the FIM outperforms the
benchmark models at accurately inferring individual-level
demand parameters when only acquisition characteristics are
available. The benefits of the proposed model are most salient
when the underlying relationship between the acquisition char-
acteristics and the parameters governing future demand are not
linear, as is the case for many empirical applications. Next, we
illustrate the managerial value of these predictions and discuss
other insights (provided by the model) that are of managerial
relevance.

Overcoming the Cold Start Problem
First, we investigate how accurately the firm can identify
“heavy spenders” using only the data from their first transac-
tion. We do so by leveraging the information from customers
in the Test sample. Specifically, we combine the estimates of
the models (calibrated with the Training sample) and the acqui-
sition characteristics observed for customers in the Test sample
and infer their individual-level demand parameters (see Web
Appendix G.7) to predict each individual’s expected number
of transactions. We then compare these inferences with custom-
ers’ actual behavior using two sets of prediction metrics

(Table 7). First, we compute the RMSE on the individual-level
average number of transactions per period.36 Second, drawing
on each individual’s expected number of transactions, we flag
whether a customer belongs to the top 10% and top 20% of
highest average number of transactions and report the propor-
tion of customers correctly identified/classified in each
group.37 For reference, we compare those figures with what a
random classifier would predict (shown in the last row).

As Table 7 shows, the FIM can predict the value of custom-
ers reasonably well: the FIM has a lower RMSE than the linear
HB and the Bayesian PCA models and is outperformed only by
the RF and the DNN. Moreover, linear HB and Bayesian PCA
models are significantly better than the baseline at identifying
valuable customers, which proves that acquisition characteris-
tics carry valuable information to predict the value of custom-
ers. Nevertheless, the FIM significantly improves the
identification of valuable customers over the benchmark
models, including the DNN, correctly identifying 40.5% of cus-
tomers in the Top 10% and 47.7% of customers in the Top 20%.
These results are consistent with the notion that because the
FIM captures the nonlinearities in the relationship between
acquisition characteristics and future demand parameters, it
does an excellent job—significantly better than the bench-
marks—at sorting customers on the basis of their expected
value inferred from their acquisition characteristics.

Similarly, a firm would use the FIM to identify which custom-
ers are the most sensitive (or least sensitive) to marketing inter-
ventions—information that would be instrumental in increasing

Table 6. Comparison with Benchmark Models (Validation Sample).

Model Log-Like

RMSE

Observation Customer Period

Linear HB −2,134.6 .247 1.307 4.570

Latent Attrition

w/ Acq.

−2,367.4 .249 1.403 4.951

Latent Attrition

w/ Mktg.

Actions

−2,194.1 .250 1.361 4.499

Latent Attrition

w/ Acq.+
Mktg. Actions

−2,384.5 .253 1.421 4.722

Bayesian PCA −2,010.0 .240 1.184 4.240

Feed-Forward

DNN

— .235 1.095 7.468

RF — .236 1.118 6.783

FIM −1,927.0 .236 1.046 4.058

Notes: Log-like corresponds to the log expected posterior predictive density.

Boldfaced cells represent the best model for each metric.

Table 7. Identifying Valuable Customers Using Test Customers.

Model RMSE

% Customers
Correctly Classified

Top 10% Top 20%

Linear HB .157 .151 .253

Latent Attrition w/ Acq. .520 .113 .207

Latent Attrition w/ Mktg.

Actions

.303 .213 .248

Latent Attrition w/ Acq.+Mktg.

Actions

.242 .090 .191

Bayesian PCA .138 .208 .313

Feed-Forward DNN .098 .349 .450

RF .106 .193 .310

FIM .131 .401 .477
Baseline (random) — .100 .200

— (.067, .127) (.170, .230)

Notes: The proportion of top spenders is computed by predicting over the

observed periods, computing the average number of transactions per period,

and selecting customers with highest predicted values. Boldfaced cells represent

the best model for each metric.

36 Using our notation, the individual-level average number of transactions per
period is �Yi = 1

Ti

∑Ti
t = 1 yit.

37 We make predictions and compute recovery rates for each draw of the pos-
terior distribution and report posterior means and 95% central posterior interval
(CPI).
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Figure 5. Acquisition characteristics for customers with top/middle/low CLV.

Figure 6. Acquisition characteristics for customers with top/middle/low sensitivity to email.
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the effectiveness of its marketing actions (e.g., Ascarza 2018).
Unfortunately, our data does not enable us to quantify the exact
value that the focal firm could extract from a FIM-based targeting
approach; ideally, one would run a field experiment to test the
effectiveness of targeting policies based on the predictions of
the FIM. Nevertheless, combining the results from the “Model
Performance” subsection, where we demonstrate the model’s
ability to predict the (individual-level) demand intercept as well
as the sensitivity to the covariates, with the results in Table 7,
where we corroborate some of those findings in our empirical
application, we are confident that implementing targeting policies
based on predictions of the FIM would generate incremental rev-
enues to the firm. We trust that future research will be able to
quantify these benefits empirically.

Second, we use the FIM results to explore the acquisition
variables that better characterize “heavy spenders” (separately
from light users), customers with “high sensitivity to email”
(from those who are better left out in the email campaigns),
and those who are “most sensitive to direct marketing” cam-
paigns. From the model predictions, we split customers from
the Test sample in three groups—top 10%, middle 80%, and
bottom 10%—for each of the three categories and summarize
the average value of each of the (standardized) variables
observed at the moment of acquisition. Figure 5 shows the
results when sorting customers on the basis of expected
future value. Several interesting findings emerge: Consistent
with the patterns we observed when exploring the predictive

power of the acquisition variables (Figure 1), we find that
the top 10% heavy spenders are less likely to be acquired
during the holiday period, more likely to being acquired
offline, and tend to buy expensive and discounted products
in their first purchase, compared with those in the bottom
10%. They are also characterized to buy certain types of prod-
ucts, as indicated by the high likelihood of including Perfume
and Hair products in their first transaction (lower likelihood of
including products in the Body Care, Home, and Services cat-
egories) as well as by a high score in dimension 4 of the
product embeddings.38

We repeat the analysis now sorting customers on the basis of
their predicted sensitivity to email (Figure 6) and predicted sen-
sitivity to DM (Figure 7). Consistent with the previous findings,
several acquisition characteristics exhibit a nonlinear relation-
ship with the sensitivities to marketing actions. Both the top
10% and bottom 10% email sensitivity groups are less likely
to buy in the Body Care category during their first transaction,
compared with the remaining 80% of customers in between.
Customers who are the most sensitive to email marketing are
more likely to be acquired online, buy less expensive products,
and buy fewer units in their first purchase. With respect to DM,
less sensitive customers buy fewer units and more expensive

Figure 7. Acquisition characteristics for customers with top/middle/low sensitivity to DM.

38 This dimension is related to products such as “Grape Line Showers” and
“Olive Harvest Conditioner”; see Table A.1 in Web Appendix A.
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products in their first transaction, while high-sensitive custom-
ers are more likely to buy relatively small-sized products,
recently introduced products, and products in the Perfume
Category at their first purchase.

Finally, we use the inferred demand parameters from these
test customers to explore the relationships between the magni-
tude of the demand parameters and the acquisition characteris-
tics. Figure 8 shows the individual-level posterior mean of the
demand parameter versus the acquisition characteristics for a
set of demand parameters and acquisition characteristics. In par-
ticular, we find that these plots corroborate that there are nonlin-
ear relationships that the model can uncover.39 Figure 9
explores possible interactions by presenting box plots of
individual-level posterior mean demand parameters and pairs
of discrete acquisition characteristics. The model replicates
the model-free insights shown in Figure 2: (1) the relationship
between the intercept and whether the customer was acquired
during the winter holiday season (Holiday) depends on
whether the customer purchased a travel-sized product

(Travel Size), and (2) the relationship between the intercept
and whether the customer purchased discounted products at
acquisition (Discount) depends on whether the customer pur-
chased a recently introduced product (New Product).
Moreover, the model captures these relationships not only for
the intercept but also for other demand parameters. For
instance, the holiday season lift is higher for customers who
were acquired during a previous holiday season compared
with those who were not, but this difference is considerably
larger for those who did not purchase a travel-sized product
when acquired. In addition, the differences in email sensitivities
across customers who received discounts on their first purchase
exist only for those who purchased a recently introduced
product at acquisition.

Conclusion
We have developed a modeling framework (FIM) that, leverag-
ing information collected when customers are acquired, enables
firms to overcome the cold start problem of CRM. Using a prob-
abilistic ML approach, the model connects underlying acquisi-
tion and demand parameters using a set of hidden factors
modeled via DEFs. The multilayer structure with flexible rela-
tionships among layers enables the researcher or analyst to be

Figure 8. Empirical relationship between the posterior mean and some (continuous) acquisition characteristics.

39 Note that these plots show marginal relationships of demand parameters and
acquisition characteristics (i.e., one at a time) where the model indeed covers
relationships accounting for all acquisition characteristics.
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agnostic about the (assumed) underlying relationship among
variables. The hidden factors automatically extract relevant
information from existing data (i.e., identify the traits that
relate acquisition characteristics with future outcomes), over-
coming the challenge (commonly faced by firms) of maintain-
ing significant amounts of redundant and irrelevant data in
their customer databases.

We have illustrated the benefits of using the FIM in a retail
setting. First, we have shown how the focal firm can further
leverage its existing database to augment the cold start data
using readily available techniques. We have further demon-
strated how subtle signals extracted from the augmented data
by the FIM enables the focal firm to make individual-level
inferences about just-acquired customers (e.g., distinguish
high-value customers from those unlikely to purchase again)
and those most and least sensitive to marketing interventions
(e.g., email campaigns, DM). We leverage the model predic-
tions to identify characteristics of first transactions that are pre-
dictive of customer behavior in future periods. For example,
compared with the rest, top 10% heavy spenders are more
likely to be acquired online and their first purchases are more
likely to be expensive and contain discounted products; custom-
ers identified as most sensitive to email marketing are more
likely to be acquired online but buy less expensive products,
and their first purchases are more likely to contain fewer units.

These findings suggest that firms can meaningfully catego-
rize customers by drawing on characteristics of their first trans-
actions. We believe this approach to customer segmentation to
be promising in that it relies on neither customer-provided data,
which is sometimes difficult to obtain (Dubé and Misra 2017),
nor external sources of data that could pose privacy concerns.
The resulting insights can be used both to prune acquisition
data and to inform decisions about the types of variables

worth collecting from customers who make a first transaction
or first visit a company’s website. Our research shows that
firms leave value on the table by not fully leveraging the mul-
tiple behaviors observed when a customer makes a first transac-
tion, and it provides a general framework for extracting
meaningful but hard-to-pinpoint relationships imprinted in
subtle ways in “cold start” data.

While this research highlights the value of using the FIM to
tackle the cold start problem of CRM, it is also important to
acknowledge some limitations of the present research. The sim-
ulation analyses enabled us to validate the accuracy of the
model at inferring individual-level parameters, but doing so in
an empirical setting, in which only realized purchases are
observed, is more difficult. We leave it to future research to
examine and quantify the effectiveness of targeting policies
based on the predictions of the FIM. Regarding the model spec-
ification, we investigated model performance using linear and
logistic specifications for the demand and acquisition models.
Although the proposed FIM is extremely flexible so as to be
adaptable to other modeling frameworks, we have not empiri-
cally tested the model’s performance in more complex struc-
tures. The current model estimation is computationally
feasible for data sets with thousands of customers, dozens of
time periods, and a handful of variables (as in our empirical
application). Although the model scales readily to situations
with more acquisition variables (and the model does not need
to be fully trained when making inferences on new customers),
increasing the sample size to, for example, millions of custom-
ers will increase estimation time substantially, constraining the
ability to gauge customers’ first impressions in a timely manner.
For such cases, variational inference implemented in recent
deep probabilistic programming languages that allow for black-
box variational inference methods (e.g., Pyro) might be a better

Figure 9. Empirical relationship between the posterior mean and some of the (binary) acquisition characteristics.
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way to estimate and use the model. We look forward to reading
about and exploring such approaches in future research.

A natural extension to this research would be to investigate a
wider range of acquisition characteristics and the relevance
thereof to customers’ first impressions in different contexts.
The results of our empirical application could be built on to
further augment the data from first purchases and incorporate
other acquisition characteristics that, although not currently col-
lected (e.g., whether the customer visited the store alone or with
family), could be valuable in identifying which marketing
actions are most likely to increase future sales. We encourage
further research to investigate these research settings and iden-
tify additional drivers and methods that might help companies
overcome the cold start problem.

Because the main goal of this work is to provide a flexible
model that overcomes the cold start problem, we have not for-
mally investigated the latent traits that drive all the observed
behaviors. It would be relevant for researchers and marketers
to identify individual traits that characterize shopper behavior,
to which end customer behavior in a variety of contexts could
be measured and estimated in a unifying FIM framework. We
hope that this research opens up new avenues for understanding
“universal” shopping traits and identifies the behaviors that best
relate to those generalizable findings.
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A Augmenting the acquisition characteristics via product embeddings

While one could attempt to directly include the product-level purchase incidence as acquisition

characteristics, such an approach would suffer from high levels of sparsity (i.e., unique SKUs are

purchased rather infrequently over the first transaction of the customers in the calibration data).

Instead, we rely on embedding models that have been developed to overcome the challenge that

large “vocabularies” have on computing probabilities of multinomial outcomes. (Specifically, how

to efficiently compute/approximate the large denominator of the softmax). As described in Sec-

tion 3.2 (Augmenting cold start data with acquisition characteristics), we use the transactional

data from anonymous customers to create product embedding vectors, i.e., vectors representations

of all products available, that captures the nature of products, as perceived by the customers. In

essence, we leverage the co-occurrences of products in customers’ baskets to infer similarities across

products.

A.1 Data processing

The anonymous transactions include 304,497 transactions and 4,730 unique product codes (corre-

sponding to unique SKUs specified by the firm). Many of those product codes are very similar

in nature, as they only reflect slight modifications of the exact same product, different sizes, or

travel-size packaging. Because those pieces of information are already captured by the acquisition

characteristics (NewProduct, Travel, and Size), we aggregate the product code to unique combi-

nations of product sub-category (e.g., liquid soap, bath, beauty oils) and product line (e.g., shea

butter, chamomile, fresh-summer). This characterization of product codes results in 515 unique

products in the data.

A.2 Word2vec algorithm

To capture latent semantic patterns among products in the same transaction, we use Word2vec,

a word embedding method in Natural Language Processing (NLP), to map words into numerical

vectors. Word2vec is proposed by Mikolov et al. (2013) who develop two architectures to take

advantages of word context: continuous bag-of-words (CBOW) and continuous skip-gram (SG). The
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first model predicts a word based on its neighbor words, and the second model predicts surrounding

words based on a given word. We use the SG model to generate a “product vector.”

More specifically, let T “ tT1, T2, ..., THu be the set of transactions, Q “ tq1, q2, ..., qMu be

the set of unique products, V “ tVq1 , Vq2 , ..., VqM |Vqi P RNu be the set of product vectors. Then,

the SG model optimizes V by maximizing the loss function:

L “
ÿ

TiPT

ÿ

qiPQ

ÿ

1ă“jă“M,j‰i

logP pqj |qiq, (A.12)

where P is the probability of observing product qj given the occurrence of product qi in the same

transaction. The probability function is defined by the softmax:

P pqj |qiq “
eV

T
qi
Vqj

M
ř

k“1

eV
T
qi
Vqk

. (A.13)

A straightforward softmax calculation requires an evaluation of all M products in the denomina-

tor, so we speed up the computation by using hierarchical softmax (Mnih and Hinton 2009) to

approximate the conditional probability. We implement the model via the Python package Gensim

(Řeh̊uřek and Sojka 2010) and train the model on anonymous customers till the loss L is sta-

ble. The hyper parameters in Gensim are: sg=1, negative=0, hs=1, window=10000, min count=1,

random seed=4. We set a large sliding window size so that all product combinations are selected.

Figure A.1: Model selection for Word2vec: Perplexity when varying the number of dimen-
sions from 2 to 10.
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We calibrate the Word2vec algorithm using N “ 2, 3, ..., 10 dimensions to represent the set

of 515 products available in the data and compare the model performance over the number of

dimensions (Figure A.1). We select the model with 6 dimensions based on the (lower) rate of

decline.1 As a result, we have a matrix of product embeddings that maps each product to a 6-

dimensional vector that represents the position of the product within a multi-dimensional space

that captures product similarities.

A.3 Interpreting the product dimensions

One could interpret those dimensions by identifying the products that score high in each of the

dimensions (Table A.1). While not all dimensions are easy to interpret, some clearly capture

characteristics defining the nature of the product. For example, looking at the products that score

high in the first dimension, we infer that it represents aromas and items for the household. The

fifth dimension seems to capture kits and other uncategorized items whereas the sixth dimension

represents a specific line of beauty called Fleur Cherie.

Table A.1: Top 5 products per dimension of the product embeddings.

Dimension 1 Dimension 2

Furniture-*-Others Immortelle-*-Accessories
Aromachology-*-Accessories Collection De Grasse-*-Accessories
Aromachology-*-Beauty Oils 027-*-Others
Home Fragrance-*-Accessories Collection De Grasse-*-Shampoo And 2in1
Relaxing Recipe-*-Home Perfume Verbena Harvest-*-Conditioner

Dimension 3 Dimension 4

Furniture-*-Others Grape-*-Shower
Orange Harvest-*-Lips Fleur Cherie-*-Concrete-Solid Perfume
Bonne Mere-*-Others Olive Harvest-*-Conditioner
Homme-*-Edp-Edt Shea Butter-*-Body Sun Care
Relaxing Recipe-*-Kits Grape-*-Body Scrub

Dimension 5 Dimension 6

027-*-Others Fleur Cherie-*-Solid Soap
Almond-*-Kits Fleur Cherie-*-Shower
Bonne Mere-*-Kits Bonne Mere-*-Others
Others-*-Lips Fleur Cherie-*-Edp-Edt
Immortelle-*-Moisturizing Treatment Fleur Cherie-*-Moisturizing Treatment

1A company with a larger product space would calibrate the model with a greater number of dimensions and pick
the dimensionality that is best suited for their application.
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In addition to creating the product embeddings that will be used to augment the data, this

methodology can also be used to visualize similarities across products. For example, Figure A.2

visualizes the 40 most popular products in the anonymous data. Because showing the 6 dimensions

would be cumbersome, we apply TSNE (t-distributed stochastic neighbor embedding; algorithm

for dimensionality reduction that is well-suited to visualizing high-dimensional data) and visualize

the data in a two-dimensional space. It appears to be four clusters representing similarities across

these products.

Figure A.2: Visual representation of the product embeddings

A.4 Product mapping for first purchase data

Finally, once the product embeddings are created, we characterize the first purchase from our focal

customers by taking the average of the embeddings of each product in the basket (BasketNature)

and by computing the standard deviation of all products in the basket (BasketDispersion), which

has missing value if the first purchase only included one product. Note that four products from

the first purchase data were not present in the data from anonymous customers and therefore have

missing values in the ProductNature variable as well.
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B Brief description of DEFs

DEFs are deep generative probabilistic models that describe a set of observations Di with latent

variables layered following a structure similar to deep neural networks. The lowest layer describes

the distribution of the observations, ppDi|z
1
i ,W

0q “ f
´

Di|W
01z1

i

¯

and the top layers describe

the distribution of the layer just below them. As in deep neural networks, DEFs have two sets of

variables: layer variables (z`i) and weights matrices (W`) for the `’th layer. Each layer variable z`i

is distributed according to a distribution in the exponential family with parameters equal to the

inner product of the previous layer parameters z``1
i and the weights W`, by

ppz`i,k|z
``1
i ,w`q “ EXPFAM`

´

z`i,k| g`

´

w`
k
1
¨ z``1
i

¯¯

` P t1, . . . , L´ 1u,

where z`i,k is the k’th component of vector z`i , w`
k is the k’th column of weight matrix W`,

EXPFAM`p¨q is a distribution that belongs to the exponential family and governs the `’th layer,

and g`p¨q is a link function that maps the inner product to the natural parameter of the distribu-

tion, allowing for non-linear relationships between layers. The top layer is purely governed by a

hyperparameter η, that is, ppzLi,kq “ EXPFAML

´

zLi,k|η
¯

.

Similar to deep unsupervised generative models, DEF models are suitable to find interesting

exploratory structure in large data sets. For example, DEFs have been applied to textual data

(newspaper articles), binary outcomes (clicks) and counts (movie ratings), being found to give

better predictive performance than state-of-the-art models (Ranganath et al. 2015).
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C Model priors and automatic relevance determination component

We detail the specification of the automatic relevance determination component that creates

sparcity in the weights Wy, Wa, and W1 and the prior distribution.

C.1 Automatic relevance determination

Following Bishop (1999) we define α as a positive vector of length N1 (number of traits in the lower

layer z1
i ), to control the activation of each trait. Note that Wy is matrix of size Dy ˆ N1, where

Dy is the length of the demand parameters βyi ; and Wa is matrix of size P ˆN1, where P is the

length of the acquisition parameters βai .

We assume that the component associated with the n’th row (demand parameter) and k’th

column (trait) of Wy is modeled by:

ppwy
nkq “ N

`

wy
nk|0, σ

y ¨ αk
˘

(C.14)

where σy is the parameter that captures the variance of the demand model outcome (e.g., the

variance of the error term in a linear regression). For identification purposes, we assume σy “ 1 for

logistic regressions. For other demand models, σy controls the scale of Wy, and therefore should

be defined accordingly. Note that if the vector of covariates xyit is not standardized, then this

distribution should also consider the scale of the covariates.

Similarly, we model wa
pk, the component associated with the p’th row (acquisition behavior)

and k’th column (trait) Wa, by:

ppwa
pkq “

$

’

’

&

’

’

%

N
´

wa
pk|0, αk

¯

if p is discrete

N
´

wa
pk|0, σ

a
p ¨ αk

¯

if p is continuous

, (C.15)

where σap is the variance of the error term in the acquisition model for variable p. This

variable again corrects for the scale of wa
pk so it matches the scale of acquisition behavior p.

Finally, note that matrix W1 is of size N1 ˆN2. We model w1
km, the component associated

with the k’th row (lower layer) and m’th column (higher layer) of W1, using a sparse gamma

8

Web
 App

en
dix



distribution:

ppw1
kmq “ Gamma

`

w1
km|0.1, 0.3

˘

(C.16)

C.2 Model priors

We model the prior distribution of the set of parameters using

ppWy,Wa,α,W1,µy,µa,σy,σa,baq “ppWy,Wa,α,W1,µy,µa,σy,σa,baq

“ppWy|α,σyq ¨ ppWa|α,σaq ¨ ppW1q ¨ ppαq

¨ ppµyq ¨ ppµaq ¨ ppσyq ¨ ppσaq ¨ ppbaq

In our estimated models, σy is a positive scalar σy when the demand model is a regression and it

does not exist when the demand model is a logistic regression; and σap is a positive scalar σap if the

p’th acquisition behavior is continuous, and it does not exists if it is discrete. We use the auto-

matic relevance determination component, described in Appendix C.1, for the terms ppWy|α,σyq,

ppWa|α,σaq, and ppW1q. Denoting Nac the number of firm-level controls for the acquisition model

(i.e., dimension of xamτ ), and Pc the number of discrete acquisition variables, we model the remaining

terms by:

ppαq “
N1
ź

k“1

InverseGammapαk|1, 1q,

ppµyq “

Dy
ź

k“1

N pµyk|0, 5q,

ppµaq “
P
ź

p“1

N pµap|0, 5q,

ppbaq “
Nac
ź

n“1

P
ź

p“1

N pbanp|0, 5q,

ppσyq “ logN pσy|0, 1q, (if demand model is a regression),

ppσaq “
Pc
ź

p“1

logN pσap |0, 1q (C.17)
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D Further details about the simulation analyses

In this appendix we provide further details about the simulation exercise described in Section 4.4

(Model performance).

D.1 Simulation design

We simulate demand and acquisition behavior for 2, 200 customers. We first simulate acquisition

and demand parameters (βai and βyi respectively), and then use those to simulate the observed

behaviors (Ai and yi1:T respectively). The data from 2,000 customers will be used to calibrate the

models while the remaining 200 individuals will be used to evaluate the performance of each of the

estimated models. For those (hold out) customers, we will assume that only the acquisition char-

acteristics are observed, we will use each estimated model to infer customers’ demand parameters

and then will compare those inferences with the true parameters.

For our simulation study, we assume that acquisition and demand parameters are correlated,

that is, observing acquisition behavior can partially inform demand parameters. For this purpose,

we generate the individual demand parameters as a function of the acquisition parameters. To

cover a variety of relationships among variables we use a linear, quadratic/interactions, and a

positive-part (i.e., max) function, therefore exploring linear as well as non-linear relationships.

Furthermore, to test whether the model can account for redundancy and irrelevance of variables

in the acquisition characteristics collected by the firm, we assume that some acquisition variables

are correlated among them and that other acquisition variables are totally independent of future

demand. For clarity of exposition and brevity’s sake, we first assume a small number of acquisition

variables. Because many empirical contexts will likely have a large number of acquisition variables,

we then extend the analysis to incorporate dozens of variables and show how the model performs

at a larger scale.

D.2 Data generation process

Generate individual-level parameters

First, we generate seven acquisition parameters for seven corresponding acquisition charac-

teristics. In order to resemble what real data would look like, and to test whether our model

can account for redundancy in the acquisition data (e.g., the number of items purchased and total
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amount spent at acquisition being highly correlated), we make some of these acquisition parameters

highly correlated among themselves. We operationalize such a relationship by assuming that six of

the seven parameters are driven by two main factors fi “

¨

˝

fi1

fi2

˛

‚, where fi „ Np0, I2q. Furthermore,

we set the seventh acquisition parameter to be independent of other acquisition parameters as well

as independent to future demand parameters. The rationale behind this structure is to resemble

the situation in which the acquisition data includes irrelevant data and therefore test whether the

model is robust to random noise. More specifically,

βaip „ N
´

µap `B1p ¨ fi1 , σ
ba
p

¯

, p “ 1, . . . , 3

βaip „ N
´

µap `B2p ¨ fi2 , σ
ba
p

¯

, p “ 4, . . . , 6

βai7 „ N
´

µa7 , σ
ba
p

¯

, (D.18)

where βaip is the pth component of acquisition vector βai , µap is the mean of the pth acquisition

parameter; B1p and B2p represent the impact of factors 1 and 2 respectively on the pth acquisition

parameter; and σba “ 0.1 the standard deviation of the uncorrelated variation of the pth acquisition

parameter. The values used to generate factors fi1 and fi2 are presented in Table D.2.

Table D.2: True values for factors fi1 and fi2 impact on acquisition parameters (B1p and
B2p).

Acquisition parameter
Weight factors

B1p B2p

Factor 1, fi1
Acq. variable 1 3.0 0.0
Acq. variable 2 2.0 0.0
Acq. variable 3 -2.5 0.0

Factor 2, fi2
Acq. variable 4 0.0 3.5
Acq. variable 5 0.0 -2.0
Acq. variable 6 0.0 -3.0

Independent
Acq. variable 7 0.0 0.0

Second, we generate the individual customer parameters for demand; these are the values

that the firm is interested in inferring (βyi . We generate three parameters governing the demand

model: an intercept and two covariate effects. We generate these individual demand parameters
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βyik as a function of the acquisition parameters βai , following a general form

βyik „ N
´

µyk ` gkpβ
a
i |Ωkq, σ

by
k

¯

, k “ 1, . . . , 3, (D.19)

where gkpβ
a
i |Ωkq is the function that represents the relationship between acquisition and demand

parameters. Because our goal is to investigate the accuracy of the model (compared to several

benchmarks) in contexts in which the relationship between acquisition and demand parameters

could take different forms, we vary gk to capture a variety of scenarios:

• Scenario 1: Linear

gkpβ
a
i |Ωkq “ ω

1
k
1
¨ βai (D.20)

This relationship would exist when, for example, customers with a strong preference for

discounted products at the moment of acquisition are also more likely to be price sensitive in

future purchases.

Table D.3: Simulated values for ω1
k in the Linear scenario

Variable
Demand variables

Intercept Covariate 1 Covariate 2

ω1
k1 0.30 -0.69 -0.03

ω1
k2 0.86 -0.61 -1.37

ω1
k3 -1.44 -0.35 -0.03

ω1
k4 -0.05 -0.10 0.12

ω1
k5 1.16 -0.06 0.71

ω1
k6 -0.12 0.10 0.93

• Scenario 2: Quadratic/interactions

gkpβ
a
i |Ωkq “ ω

1
k
1
¨ βai ` β

a
i
1
¨ Ω2

k ¨ β
a
i (D.21)

This pattern captures situations in which the relationship between an acquisition variable and

future demand depends on other acquisition-related parameters, or when such a relationship

is quadratic. For example, it is possible that a strong preference for discounted products
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at the acquisition moment relates to price sensitivity in future demand only if the customer

was purchasing for herself/himself, or outside the holiday period. In that case, the relation-

ship between demand parameters and acquisition variables will be best represented by an

interaction term.

Table D.4: Simulated values for ω1
k and Ω2

k in the Quadratic/Interaction scenario

Variable
Demand variables

Intercept Covariate 1 Covariate 2

ω1
k1 0.30 -0.69 -0.05

ω1
k2 0.86 -0.61 -1.04

ω1
k5 1.16 -0.06 0.36

ω1
k3 -1.44 -0.35 -0.27

ω1
k4 -0.05 -0.10 0.10

ω1
k6 -0.12 0.10 -1.11

Ω2
k11 -0.01 0.06 0.00

Ω2
k22 0.41 0.34 0.00

Ω2
k33 -0.01 0.05 0.00

Ω2
k44 0.01 -0.04 0.00

Ω2
k55 0.17 -0.24 0.00

Ω2
k66 -0.21 -0.11 0.00

Ω2
k12 -0.36 -0.27 0.00

Ω2
k13 -0.01 0.12 0.00

Ω2
k14 -0.05 -0.01 0.00

Ω2
k15 0.11 -0.08 0.00

Ω2
k16 0.08 -0.16 0.00

Ω2
k23 -0.01 -0.18 0.00

Ω2
k24 0.24 0.10 0.00

Ω2
k25 -0.24 -0.29 0.00

Ω2
k26 -0.06 0.04 0.00

Ω2
k34 0.17 0.07 0.00

Ω2
k35 0.14 -0.14 0.00

Ω2
k36 0.36 -0.10 0.00

Ω2
k45 0.08 0.04 0.00

Ω2
k46 -0.17 -0.15 0.00

Ω2
k56 0.29 -0.17 0.00
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• Scenario 3: Positive part

gkpβ
a
i |Ωkq “ ω

1
k
1
¨

¨

˚

˚

˚

˚

˝

maxtβai1, 0u

...

maxtβaiP , 0u

˛

‹

‹

‹

‹

‚

(D.22)

This pattern captures situations in which an acquisition variable relates to future demand

parameters, but only if the former passes a certain threshold. For example, the number of

items purchased at the moment of acquisition might relate to the likelihood of purchasing

again in the category, but only above a certain threshold that reflects strong parameters for

such a category.

Table D.5: Simulated values for ω1
k in the Positive part scenario

Variable
Demand variables

Intercept Covariate 1 Covariate 2

ω1
k1 0.34 0.00 0.30

ω1
k2 0.00 0.00 0.86

ω1
k3 0.00 0.00 -1.44

ω1
k4 0.00 0.28 -0.05

ω1
k5 0.00 0.00 1.16

ω1
k6 0.00 0.00 -0.12

For each scenario, we generate the intercept (βyi1) and the effect of the first covariate (βyi2) ac-

cording to the functions g1p¨q and g2p¨q as described in equations (D.20)–(D.22), while maintaining

the effect of the second covariate (βyi3) to be a linear function of the acquisition variables. Further-

more, to compare parameters in the same scale across scenarios, we scale demand parameters such

that the standard deviation across individuals is equal across all scenarios.

Simulate individual-level behaviors

Once the individual-level parameters are generated, we simulate behaviors using the generated

acquisition and demand parameters for each scenario, a set of market-level covariates xampiq for the

acquisition model, and individual and time-variant covariates xyit for the demand model. We assume
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a Gaussian distribution for all behaviors,

Aip „ Npβaip ` xampiq
1
¨ bap, σ

a
pq, p “ 1, . . . , 7 (D.23)

yit „ Npxyit
1
¨ βyi , σ

yq, t “ 1, . . . , 20. (D.24)

with σa “ 0.5, xampiq „ N p0, 1q, ba „ N p0, 2q, σy “ 0.5, and xyit „ Bernoullip0.5q.

D.3 Estimated models

Given the observed behaviors (Aip and yit) and the covariates (xampiq and xyit), we estimate the

model parameters. In addition to our proposed FIM, we use four benchmark models to infer βyj :

(1) a hierarchical Bayesian demand-only model in which acquisition variables are not incorporated,

(2) a linear model, where individual demand parameters are a linear function of the acquisition

characteristics, (3) a full hierarchical model, where individual demand and acquisition parameters

are jointly distributed according to a multivariate Gaussian distribution with a flexible covariance

matrix, and (4) a Bayesian PCA model, identical to our proposed model, without the higher layer.

For all models we assume the same linear demand model as in the data generation process, equation

(D.24). We describe these models in more detail.

D.3.1 Hierarchical Bayesian (HB) demand-only model This first benchmark is a HB

demand-only model that does not incorporate acquisition variables. That is,

βyi |µ
y,Σy „ N pµy,Σyq,

where µy, and Σy are the population mean vector and covariance matrix respectively.

We acknowledge that such a model would fail to provide individual-level demand parameter

estimates for customers that are not in the calibration sample. In other words, the best this model

can provide is to draw the estimates from the population distribution. We include this benchmark to

illustrate the problem of estimating parameters when only one observation per customer is observed

and most importantly, to have a reference of how much error we should obtain if the model only

captured random noise.
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D.3.2 Linear HB model The second benchmark is the linear HB model, which is an extension

of the previous model with the mean demand parameters being a linear function of the acquisition

characteristics and market level covariates. That is,

βyi “ µ
y ` Γ ¨Ai `∆ ¨ xampiq ` uyi , uyi „ N p0,Σyq,

where Γ capture the linear explanatory power of acquisition characteristics Ai, and ∆ allows to

control for market-level covariates xampiq.

In this model, we incorporate both acquisition characteristics as well as market-level covariates

to control for firm’s actions that may be correlated with acquisition characteristics (e.g. average

price paid and promotional activity). Note that this model resembles the first simulated scenario in

which the relationship between acquisition and demand parameters was assumed to be linear. As

such, this model should be able to predict demand parameters in the first scenario most accurately.

D.3.3 Full hierarchical model For the third benchmark, we endogenize the acquisition char-

acteristics by modeling them as an outcome. Similar to our proposed FIM (described in Section 4.1)

(Model development), the full hierarchical model estimates acquisition and demand parameters

jointly, with the difference that these two sets of parameters are modeled using a standard hierar-

chical model, rather than connected via DEF models. That is, the full hierarchical model assumes

that

βi “

¨

˝

βyi

βai

˛

‚„ N pµ,Σq,

where µ is the population mean vector of all individual parameters (demand and acquisition), and

Σ is the population covariance matrix of these parameters, capturing correlations within demand

and acquisition parameters as well as across those types of parameters.

Because of the Gaussian specification for βi, this model imposes a linear relationship between

βyi and βai ; this is, the conditional expectation of βyi given βai , is linear in βai . As such, this model is

mathematically equivalent to the linear HB model. However, the full hierarchical model differs from

the linear model if acquisition behavior Ai is not linear in βai (e.g. logit or log-normal. Moreover,

if the number of acquisition characteristics increases, the full hierarchical model becomes more
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difficult to estimate due to the dimensionality of the covariance matrix. In this simulation exercise

we assume a linear (Gaussian) acquisition model and therefore the linear and full hierarchical models

should provide equivalent results. Nevertheless, this is not the case in the empirical application as

we incorporate binary acquisition characteristics modeled using a logit specification.

D.3.4 Bayesian PCA The fourth benchmark is the closest to our proposed model, with the

omission of the higher layer of traits (z2
i ). Analogously as in our model, we model individual

demand and acquisition parameters as a linear function of a set of traits,

βyi “ µ
y `Wy ¨ z1

i (D.25)

βai “ µ
a `Wa ¨ z1

i . (D.26)

In this Bayesian PCA model, we model the first layer z1
i as a vector of independent standard

Gaussian variables,

z1
ik „ N p0, 1q.

Note that like the linear HB and full hierarchical specifications, the PCA also imposes a linear

relationship between βyi and βai . However this approach is different from those because it allows

for data dimensionality reduction via the latent factors. Similarly, as in our proposed model, we

use sparse Gaussian priors on Wy and Wa, using an automatic relevance determination model to

automatically select the number of traits.

As discussed in Section 4.1.5 (Bringing it all together), the Bayesian PCA model is a nested

specification of the proposed FIM (in which the second layer does not exist) whereas the full

hierarchical model and HB-linear specifications reflect alternative (simpler) ways in which past

research has modeled these types of data. Figure D.3 visually shows how each of these approaches

compares with our proposed modeling framework.

D.4 Assessing model performance

We calibrate each model using acquisition and demand data for 2, 000 customers. This step resem-

bles the firm calibrating each of the models (our proposed model as well as the benchmark models)

with the historical data. First, we corroborate that all models are equally capable of recovering the
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Figure D.3: Visualization of the benchmark models
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individual-level parameters for customers in the calibration sample. In particular, we confirm that

the in-sample predictions for βyi are almost perfect for all model specifications and for all scenarios

(see Figure D.4 for the in-sample predictions). In other words, all models are equally capable of

accurately estimating individual-level demand parameters for in-sample customers.

Then, we evaluate the ability of each model to form first impressions of newly-acquired

customers. Under each scenario, we use the estimates of each model to predict the individual-

level demand parameters for the remaining 200 customers, using only their acquisition data, and

compare those predictions with the true values. This task requires the computation of the individual

posterior mean for each individual (pβyj “ Epβyj |Aj ,Dq) by integrating over the estimated density

ppβyj |Aj ,Dq,
pβyj “

ż

βyj ¨ ppβ
y
j |Aj ,Dqdβ

y
j .

While the procedure described in Section 4.3 is valid for all models, the expectation Epβyj |Aj ,Dq can

be computed directly for some of the benchmark models, which we do for simplicity. For example,

for the HB demand-only model, this procedure reduces to compute the expectation of individual

draws of βyj from the population mean, which converges to the posterior mean of the population
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Figure D.4: Individual posterior mean vs. true intercepts of the demand model. Each dot
represents a customer from the calibration set. In blue, the 45 degree line
represents perfect predictive power.
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mean µy. For the linear HB model, it reduces to use the linear formulation and the posterior mean

estimates of µy, Γ, and ∆. For the full hierarchical model, the Bayesian PCA model, and our

proposed FIM, where acquisition is modeled as an outcome, we compute the posterior of βyj given

Aj using HMC as described in Section 4.3 (Model inferences for newly acquired customers).

Figure D.5 shows the scatter plot of the predicted (pβyj1) versus actual (βyj1) individual demand

intercepts from each model, for each scenario.2 Not surprisingly, the HB demand-only model that

does not incorporate acquisition behavior in the model (top row of Figure D.5) cannot distinguish

2For brevity’s sake, we present the results for one parameter of the demand model (the intercept), but the results
hold for all other parameters as well.
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(hold out) individuals from their population mean. Turning our attention to the other model

specifications, we start analyzing the scenario in which the relationship between acquisition and

demand parameters is linear (left-most column of Figure D.5). Under this scenario, all models are

equally capable of predicting demand estimates for (hold out) customers using only their acquisition

data. This result is not surprising for the benchmark models as their mathematical specification

resembles that of the simulated data. However, when the relationship between the acquisition and

demand parameters is not perfectly linear (as it is the case in scenarios 2 and 3), all benchmark

models struggle to predict these individual-level estimates accurately. On the contrary, the proposed

FIM is flexible enough to recover these parameters rather accurately. Note that the flexibility

of the FIM comes at no overfitting cost; that is, even when the relationship is a simple linear

relationship, our model recovers the parameters as well as the benchmark models, which assume a

linear relationship by construction.

To explore the differences in accuracy more systematically, we compute two different mea-

sures of fit: (1) the (squared) correlation between true βyj and predicted pβyj (i.e., R-squared) —

measuring the model’s accuracy in sorting customers (e.g., differentiating customers with high

vs. low value, more vs. less sensitivity to marketing actions) — and the root mean square error

(RMSE) — measuring the accuracy on predicting the value/magnitude of the parameter itself.

The results are presented in Table 4 of the main manuscript, confirming the results from Fig-

ure D.5. Under a true linear relationship (Scenario 1), the FIM predicts the individual parameters

as good as the benchmark models. The RMSE of the FIM is comparable to the benchmark models,

and the R-squared is equal to the benchmark models. However, when the relationship among the

model parameters is not perfectly linear (Scenarios 2 and 3), the FIM significantly outperforms

the benchmark models in all dimensions. In particular, the R-squared of the FIM is higher than

that of the benchmarks, demonstrating that the model is superior at sorting customers based on

their demand parameters. Moreover, the RMSE for the FIM is substantially lower than that of

the benchmarks, indicating that the proposed model predicts the exact magnitude of customer

parameters (e.g., purchase probability, sensitivity to marketing actions) more accurately than any

of the benchmarks.
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Figure D.5: Individual posterior mean vs. true intercepts of the demand model. Each
dot represents a customer from the hold out set; i.e., only their acquisition
characteristics are used to form first impressions about their individual-level
parameters. In blue, the 45 degree line represents perfect predictive power.

Scenario 1: Linear Scenario 2: Quadratic/interactions Scenario 3: Positive part

H
B

 dem
and−

only
Linear H

B
F

ull hierarchical
B

ayesian P
C

A
F

IM

−20 −10 0 10 20 30 −20 −10 0 10 20 30 −20 −10 0 10 20 30

−20

−10

0

10

20

30

−20

−10

0

10

20

30

−20

−10

0

10

20

30

−20

−10

0

10

20

30

−20

−10

0

10

20

30

True

P
os

te
rio

r 
m

ea
n

D.5 Interpreting the model parameters and results

To get a better sense of what the model is doing and what its parameters capture, we explore in

detail the model estimates and compare those with the parameters used to simulate the data. We

do so for the linear case, as it is the easiest to interpret the relationships among variables. For this

particular exercise, we select the FIM with 5 dimensions in the lower layer and 3 in the top layer.3

We start by evaluating the number of traits captured by the FIM; this is an insight that can be

obtained in two ways. First, looking at the posterior estimates for α, parameters that determined

3Results are equivalent for other specifications of the model.
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the weights of the lower layer to check how many dimensions of the lower layer are activated in the

model. Second, by looking at the specific weights, Wy and Wa, between the lower layer and the

model parameters and interpret their meaning based on their magnitude.

We know from the simulations (Appendix D.1) that the data were generated from three

factors: two factors generating 6 acquisition characteristics that relate to demand parameters,

and another independent factor that generated one acquisition variable that was irrelevant for the

demand model. Figure D.6 shows the posterior distribution for α. While the model was specified

to have 5 dimensions in the lower layer, it is obvious that the model only “needs” three, one of

which is irrelevant in the demand specification.

Figure D.6: Posterior distribution of α
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We show in Table D.6 the posterior mean of the rotated weight traits on demand parameters

and acquisition parameters. The first two traits capture most of the variance across individuals

for demand and acquisition parameters, while the other traits capture residual variance. First,

trait 1 captures the associations among acquisition variables 1 through 3, whereas trait 2 captures

the associations of acquisition variables 4 through 6. Second, both traits capture relationships

with demand: trait 1 is negatively correlated with intercept and positively correlated with both

covariates, whereas trait 2 is negatively correlated with intercept and covariate 2 (effect on covariate

1 is not significantly different from zero).
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Table D.6: Posterior mean of lower layer weights (Wy and Wa) for FIM.

Variable Trait 1 Trait 2 Trait 3 Trait 4 Trait 5

Intercept -5.55 -2.14 0.04 0.00 -0.00

Covariate 1 2.28 -0.53 0.10 -0.00 0.00

Covariate 2 2.91 -3.63 -0.04 -0.00 0.00

Acq. variable 1 -2.78 0.07 -0.04 -0.01 0.00

Acq. variable 2 -1.84 -0.03 0.02 0.00 0.00

Acq. variable 3 2.30 0.05 -0.02 0.00 -0.00

Acq. variable 4 -0.31 3.40 0.02 -0.01 0.01

Acq. variable 5 0.18 -1.95 0.00 0.01 0.02

Acq. variable 6 0.26 -2.91 -0.05 0.01 0.01

Acq. variable 7 -0.01 0.02 -0.03 -0.02 0.01

Note: In bold parameters such that corresponding CPI do not contain zero

Now, we are interested in comparing these insights with the true values used for the simula-

tion, specifically how these estimated traits relate to the true factors in the data generation process.

In the data generation process, demand parameters are generated from acquisition parameters. In-

stead, the FIM gives us the overall associations of the traits with demand parameters, and not the

one-to-one relationships between acquisition variables and demand parameters. Therefore, in order

to assess whether our model can capture the essence of the insights the “true” effect of factors

fi1 and fi2 on acquisition parameters and demand parameters in Table D.7. For the acquisition

parameters, these true effects are B1p and B2p from (D.18) (whose values are shown in Table D.2).

For the demand parameters, these effects can be obtained by replacing (D.18) in (D.19), which

reduces to ω1
k
1
B1 and ω1

k
1
B2 for the effects of factors 1 and 2, respectively.
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Table D.7: True associated effects of factors on demand and acquisition variables.

Demand/acquisition
Variable

Factors

parameter 1 2

Intercept ω1
1
1
Bf 6.20 -2.10

Covariate 1 ω1
2
1
Bf -2.40 -0.57

Covariate 2 ω1
3
1
Bf -2.77 -3.76

Acq. variable 1 Bf1 3.00 0.10

Acq. variable 2 Bf2 2.00 0.00

Acq. variable 3 Bf3 -2.50 0.00

Acq. variable 4 Bf4 0.00 3.50

Acq. variable 5 Bf5 0.00 -2.00

Acq. variable 6 Bf6 0.00 -3.00

Acq. variable 7 Bf7 0.00 0.00

By comparing Tables D.6 and D.7 we observe that: (1) trait 1 captures the reverse of factor

1 (pz1
i1 « ´fi1); and (2) trait 2 captures factor 2 (pz1

i2 « fi2). This result implies that our model is

able to capture and deliver meaningful insights that relate to the true data generation process.

D.6 Why is the model giving superior performance?

A natural question to ask is, why is the proposed model outperforming the benchmark models?

As described in Section 4.1 (Model development), the DEF component of the proposed model is

very flexible at capturing underlying relationships between the model parameters. Such a property

enables the model to capture non-linear relationships between acquisition characteristics and the

parameters that drive customer demand. This is unlike the benchmarks whose specification imposes

a linear relationship among the variables. As such, even though the in-sample predictions of all

the models are very accurate (Figure D.4), when any of the benchmark models are used to make

(out-of-sample) predictions for newly-acquired customers, the predicted values differ dramatically

from the actual values (Figure D.5).
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Table D.8: Squared correlation (true vs predicted) for Covariate 1; Quadratic/Interaction
Scenario.

Dim. Upper layer

Bayesian PCA FIM

Dim. Lower layer 0 1 2

1 0.209 0.207 0.209
2 0.237 0.304 0.306
3 0.257 0.402 0.404
4 0.250 0.539 0.425
5 0.252 0.538 0.641
6 0.250 0.509 0.612
7 0.250 0.451 0.627
8 0.243 0.525 0.571

To better corroborate that it is the DEF component that brings the non-linearities, we com-

pare in greater detail the predictions of the BPCA model with those of the FIM. We pick the BPCA

(among the other benchmarks) because that is the only model that is mathematically nested to our

proposed model. In turn, the BPCA is the closest to the FIM, with the difference that it does not

have an upper layer (and its corresponding non-linear link function). Table D.8 shows the squared

correlation (true vs. predicted) for Covariate 1 of the second scenario (Quadratic/Interaction), for

the BPCA and the FIM models, as we vary the number of dimensions. The first column corresponds

to the fit of the BPCA model, as we increase the number of dimensions. We see an improvement

in fit as we increase the number of dimensions from 1 to 2, and to 3; and no improvement after

that, with the best fit obtained being around 0.25. However, the jump in fit is tremendous when

we allow the model to have an upper layer (even if it only includes 1 dimension).4 Such an upper

layer is the model component that allows for flexible relationships relationships. The same results

hold when looking at the third scenario (Positive-part).

To conclude, the upper layer of the DEF — the component that allows the model to capture

non-linear relationships among variables — is responsible for the great improvement in the model’s

ability to predict (out-of-sample) individual-level parameters when the underlying relationship be-

tween acquisition characteristic and the demand parameter is not linear.

4We discuss the importance of the dimensionality of the upper layer in Appendix D.7.
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D.7 Exploring the number of dimensions per layer

As described in Section 4.1.3 (Linking acquisition and future demand: Deep probabilistic model),

we take a hybrid approach to model selection in which we make sure that the number of pre-specified

dimensions is large enough — a phenomenon that can be validated from the model parameters —

while we rely on the priors of the model to ensure regularization. In this appendix we leverage the

simulation results to provide further details about the model selection procedure and to corrobo-

rate the two premises that drive our model selection approach. Specifically, we present empirical

evidence that (a) one can ensure that the model has a “large enough” number of dimensions by

examining the posteriors of the Gaussian ARD priors, and (b) as long as the layers have enough

dimensions to capture meaningful interrelations and priors induce sparsity on the weight traits,

increasing the number of dimensions on each layer would only lead to higher computational cost,

without the corresponding loss in out of sample performance.

To illustrate how one can use the posterior of the Gaussian ARD priors to ensure that the

number of dimensions is “large enough,” we revisit the model examined in Appendix D.5 in which

the simulated behavior was generated by three factors, one of which had no impact on the demand

parameters, and the FIM specification included 5 traits in the lower layer (e.g., N1 “ 5). As seen in

that section, the FIM results not only recover that data generation process (Tables D.6 and D.6),

but also informs of the number of dimensions in the lower layer (Figure D.6). In this appendix

we expand the results presented in Figure D.6 by showing the posterior estimates for α for FIM

specifications with different values for N1 and N2 (Figure D.7).

As it is evident from the figure, the model detects that the data were generated from three

latent traits (as long as the FIM is specified with N1 ě 3) and in cases where the FIM allows for

larger dimensionality, the model “shuts down” the rest of the traits. In other words, regardless of

the dimensionality of the top layer (N2), when the number of traits in the lower layer is not enough,

the model does not “shut down” any component. However, once N1 is large enough (in this case

N1 “ 3, as it was used to generate the data), the posterior mean of α4, α5 and so on, are all close

to zero. These results corroborate that the posterior distribution of the Gaussian ARD variances

can be used to show when the model has a “large enough” number of dimensions.
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Figure D.7: Posterior mean of α as a function of number of dimensions in lower layer (N1)
and upper layer (N2). Components are sorted in decreasing order per model.
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In contrast to the usefulness of α to detect relevant lower traits, our model does not have

an analogous parameter to explore how many upper level traits are enough to capture the relevant

non-linear interrelations. Instead, each component of the upper weight W1, w1
km (for lower trait k

and upper trait m), has i.i.d. sparse gamma priors, which by themselves induce regularization. In

order to summarize each upper level trait in a way that can help us determine whether they make
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an impact on those 6 relevant lower layer traits, we compute a pseudo-α1
m for each upper trait m

using the weight matrix W1. Similarly to how the lower level weights Wy and Wa are related to α

(i.e., variance of zero-centered Gaussian distributions), we compute these pseudo-α1’s by averaging

the square of all weights associated with a fixed upper level trait and those 6 relevant lower level

traits, as described by

pseudo-α1
m “

1

6

6
ÿ

k“1

`

w1
km

˘2
.

We show the posterior this quantity in Figure D.8. Not surprisingly, these posterior distributions

are concentrated close to the origin, which suggests that no upper trait is relevant for this scenario

(as the data were generated linearly).

Figure D.8: Posterior distribution of pseudo-α1 (Linear scenario).
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More interestingly, we further explore this quantity using a scenario in which the model

requires to capture non-linear relationships, such as the one with Interactions. Figure D.9 shows

the posterior of pseudo-α1 for two FIM specifications with different values of N2. First, Figure D.9a

clearly shows that the FIM with N1 “ 5 and N2 estimated for the Interactions scenario, unlike

the FIM estimated using the linearly simulated data, has all three upper traits being relevant in

the model. Second, if we estimate a FIM with more upper traits (N1 “ 5, N2 “ 5) the model

starts to “shut down” the less relevant traits, indicating that such a model is enough to recover the

non-linear relationships present in those data.

Finally, we leverage the results of multiple estimated FIM specifications over the Interactions

scenario and show that once the FIM specification contains the dimensions “needed” by the data,

the performance of the model remains the same even if we add dimensions to the DEF component.
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Figure D.9: Posterior distribution of pseudo-α1 (Interactions scenario).

(a) FIM (N1 “ 5, N2 “ 3).
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(b) FIM (N1 “ 5, N2 “ 5).
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To illustrate this phenomenon, we focus on the performance of the FIM at predicting the parameter

for the sensitivity to the first covariate (bottom half of middle columns in Table 4). Figure D.10

shows the squared correlation between simulated and predicted values of the parameter of interest

(higher numbers imply better model performance). The figure shows a notable improvement in

performance as we increase the dimensionality of the lower layer from 1 to 2, 3, and 4. However,

once N1 ą 3, the model performs very similarly as more layers are added to DEF. Similarly, we

observe a radical increase in performance as one increases the dimensionality of the upper layer

(from 0 to 1, 2 and 3); reaching a point in which more dimensions do not alter the performance
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of the model. In other words, the performance in out-of-sample recovery of demand parameters

flattens, once the model has a “large enough” number of dimensions.

Figure D.10: Square correlation between simulated and predicted β for Covariate 1 in
Scenario 2: Interaction

D.8 Model performance “at scale”

While the analysis thus far assumed a handful number of acquisition variables, many firms collect

a larger quantity of behaviors when a customer makes their first transaction. These firms do not

necessarily know a priori which variables can be most predictive of demand parameters, and if so,

what the underlying relationship between these variables would be. In this section we show that

models that incorporate all interactions fail to recover demand parameters when the number of

acquisition variables is large, whereas the FIM can accurately infer these non-linear relationships.

We maintain a similar simulation structure, where acquisition parameters are driven by factors, but

instead we now have 5 factors and 60 acqusition behaviors, where acquisition behavior is driven

by one and only one factor, and each factor generates 12 acquisition parameters. We start by

describing the simulation details and their differences to the main analysis in Appendix D.1. Then,

we describe the additional estimated models, specifically those that include interactions. Finally,
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similarly as in Appendix D.4, we show the models’ ability to infer demand parameters for out of

sample customers.

D.8.1 Simulation details We assume there are 3 demand parameters (intercept and two

covariates) and 60 acquisition parameters, for 60 acquisition characteristics. We generate these

acquisition parameters as being highly correlated among each other by assuming these parameters

are driven by one of five factors fi1, . . . , fi5. Similarly as in Equation (D.18), we generate acquisition

parameters by:

βaip „ N
´

µap `B1p ¨ fi1 , σ
b
p

¯

, p “ 1, . . . , 12

βaip „ N
´

µap `B2p ¨ fi2 , σ
b
p

¯

, p “ 13, . . . , 24

βaip „ N
´

µap `B3p ¨ fi3 , σ
b
p

¯

, p “ 25, . . . , 36

βaip „ N
´

µap `B4p ¨ fi4 , σ
b
p

¯

, p “ 37, . . . , 48

βaip „ N
´

µap `B5p ¨ fi5 , σ
b
p

¯

, p “ 49, . . . , 60, (D.27)

where µap is the mean of the pth acquisition parameter; B`p represent the impact of factor `

respectively on the pth acquisition parameter; and σp the standard deviation of the uncorrelated

variation of the pth acquisition parameter.

The rest of the simulation design is identical as the simulation in Section 4.3 (Model inferences

for newly acquired customers), with a different set of parameters Ω. In order to incorporate noise

and to allow for different acquisition parameters to inform demand parameters, we relate demand

parameters only to a subset of acquisition parameters. Specifically, we choose Ω such that demand

parameters are only affected by acquisition parameters from three out of the five factors. We

achieve this by setting to zero Ω values for the remaining acquisition parameters. The intercept is

a function of the acquisition parameters from factors 1, 2 and 3 (i.e., Ω1p “ 0, @p “ 37, . . . , 60).

Covariate 1 is a function of the acquisition parameters from factors 1, 2 and 4 (i.e., Ω2p “ 0, @p “

25, . . . , 36, 49, . . . , 60). Covariate 2 is a function of the acquisition parameters from factors 2, 3 and

4 (i.e., Ω3p “ 0, @p “ 1, . . . , 12, 49, . . . , 60). Similarly as in the main simulation analysis, Covariate

31

Web
 App

en
dix



2 is always a linear function of acquisition parameters for all scenarios. The values we use for Ω

are specific to each scenario:

• Linear: Following (D.20), we define ω1
kp „ N p0, 2q for all non-zero ω1

kp.

• Quadratic/Interaction: Following (D.21), we define ω1
kp „ N p0, 2q for all non-zero ω1

kp;

and Ω2
kpp1 „ N p0, 1q for all non-zero Ω2

kpp1 .

• Positive part: To avoid attenuating the effect of the non-linear function by combining a

large number of non-linear functions of correlated acquisition parameters, we fix the effect

to the intercept and the first covariate as a function of only one acquisition parameter from

each of the three factors that determine that demand parameter. Following (D.22), we define

ω1
3p „ N p0, 2q for all non-zero ω1

3p, and:

ω1
1,1 “ 12.5 ω1

1,13 “ ´8 ω1
1,25 “ 4

ω1
2,1 “ ´7.5 ω1

2,13 “ ´4 ω1
2,37 “ 8.

Finally, to compare parameters in the same scale across scenarios, we standardize demand param-

eters such that the population standard deviation is 2.

D.8.2 Estimated models In addition to all models described in Appendix D.3, we estimate

a Linear HB model where we include all interactions of acquisition parameters,

βyi “ µ
y ` Γ ¨ rAi `∆ ¨ xampiq ` uyi , uyi „ N p0,Σyq,

where rAi includes all acquisition characteristics, their squares, and all two-way interactions among

them.

We also estimate a Lasso model with all interactions, which is identical to the Linear HB model

with interactions, but we exchange the Gaussian prior for a Laplace prior to enforce regularization

using a different functional form.
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D.8.3 Results We estimate all models except the full hierarchical model, which is computa-

tionally unstable given that now there are 60 acquisition variables, and therefore we need a 63ˆ63

covariance matrix. Note that in theory, and in practice as we showed in Appendix D.4, the full

hierarchical model is equivalent to a Linear HB model. Therefore, removing this model from the

analysis does not bias our benchmark.

We show in Table D.9 the out of sample prediction of intercept, and the two covariates un-

der all three scenarios for all models. We replicate the main results from Appendix D.4. Both

the Linear HB and Bayesian PCA models perform well in the Linear scenario. The FIM per-

forms as good as these models in the Linear scenario, and outperforms these linear models in the

Quadratic/Interaction and the Positive part scenarios. More importantly, both models that include

all interactions, Linear and Lasso, do not perform well in any scenario.
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Table D.9: Model at scale results

Model
Intercept Covariate 1 Covariate 2

R-squared RMSE R-squared RMSE R-squared RMSE

Linear

HB demand-only 0.000 2.018 0.000 2.038 0.000 2.003

Linear HB 0.990 0.198 0.987 0.231 0.983 0.264

Linear with interactions 0.202 4.267 0.166 4.825 0.121 5.265

Lasso with interactions 0.161 5.916 0.115 6.129 0.108 5.561

Bayesian PCA 0.990 0.197 0.988 0.229 0.983 0.265

FIM 0.990 0.206 0.987 0.230 0.983 0.262

Quadratic/Interaction

HB demand-only 0.004 2.060 0.000 2.133 0.007 2.084

Linear HB 0.231 1.808 0.398 1.663 0.994 0.167

Linear with interactions 0.147 4.064 0.201 4.331 0.246 4.125

Lasso with interactions 0.147 4.212 0.211 4.871 0.236 4.181

Bayesian PCA 0.243 1.790 0.408 1.646 0.994 0.167

FIM 0.598 1.456 0.681 1.432 0.994 0.165

Positive part

HB demand-only 0.003 2.010 0.005 2.030 0.017 1.965

Linear HB 0.723 1.059 0.746 1.019 0.990 0.201

Linear with interactions 0.232 3.990 0.165 4.916 0.122 4.414

Lasso with interactions 0.161 4.493 0.088 5.336 0.186 5.032

Bayesian PCA 0.728 1.052 0.747 1.017 0.991 0.196

FIM 0.884 0.699 0.853 0.825 0.991 0.192
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E Rotation of traits

In order to obtain insights about the traits, we post process the posterior sample by carefully

rotating the lower weights parameters across draws to define a consistent sign and label of those

traits.

First, we define the vectors βyai “

¨

˝

βyi

βai

˛

‚, and µya “

¨

˝

µy

µa

˛

‚ of length pDy ` P q, and the

matrix Wya “

»

–

Wy

Wa

fi

fl of size pDy ` P q ˆN1. Second, we rewrite (5) and (6) as:

βyai “ µya `Wya ¨ z1
i . (E.28)

Let D the number of posterior draws obtained using HMC, and d “ 1, . . . , D one draw from the

posterior distribution. For a sample
 

Wya
d , tz

1ui
(D

d“1
, where traits may switch signs and labels, we

are interested in constructing
!

ĂWya
d , trz

1
idui

)D

d“1
with “consistent labels and signs”, such that:

Wya
d ¨ z1

id “
ĂWya

d ¨ rz1
id @i, d

Intuitively, we are interested in finding the major traits that explain heterogeneity.

In order to build this sample, we use two steps:

1. Fix labels:

We obtain the singular value decomposition (SVD) of Wya
d “ Ud ¨Dd ¨V

1
d, where Ud is an

orthogonal matrix of size, pDy ` P q ˆ N1, Dd is a diagonal matrix of size N1 ˆ N1 with

non-negative diagonal values sorted in decreasing order, and Ud is a orthogonal matrix of

size N1 ˆN1. We define xWya
d “ Ud ¨Dd, and pz1

id “ V1
d ¨ z

1
id. Note that we have Wya

d ¨ z1
id “

Ud ¨Dd ¨V
1
d ¨ z

1
id “

xWya
d ¨ pz1

id.

This construction allow us to choose the labels of the traits that explain the most variance in

decreasing order, similarly as in Bayesian PCA (Bishop 2006), which are unlikely to switch

across posterior samples for well behaved samples of the product Wya
d ¨z

1
id, which is identified

in our model. However, the sign of the traits are not uniquely determined by the SVD. Note
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that if we multiply by -1 a column of Ud, and we also multiply by -1 the same corresponding

row of V1
d, then we would also obtain a valid SVD.5

2. Fix signs:

We are interested in fixing a sign for each traits across draws of the posterior distribution,

however some trait weights may change sign across the posterior. In order words, the posterior

distribution may have its mode close to the origin, and therefore the weights may take values

both positive and negative. Therefore, we choose the sign of each trait by observing the

behavior it impacts the most (demand or acquisition), and we choose the sign such that the

weight of this trait on that behavior does not change sign across draws of the posterior sample.

More formally, let k “ 1, . . . , N1 a trait (a column of Wya
d ), and npkq the behavior (a row

of Wya
d ) that is most impacted by trait k, which we operationalize by computing the poste-

rior mean of the absolute value of pwyank, the weight of trait k on behavior n (i.e., the nk’th

component of matrix xWya), and choosing the maximum:

npkq “ arg max
n“1,...,pDy`P q

#

1

D

D
ÿ

d“1

abs
´

pwyank,d

¯

+

(E.29)

Then, we change the sign of the trait so wya
npkqk,d is always positive, by defining rId a diagonal

matrix of size N1 ˆN1, where its k diagonal value is:

prIdqkk “ sign
´

pwyanpkqk,d

¯

Finally, we construct our sample by:

ĂWya
d “ xWya

d ¨ rId @d

rz1
id “

rId ¨ pz
1
id @i, d

5Let rI a diagonal matrix of size N1 ˆN1 where each of its diagonal values are either 1 or -1, then we have that
´

Ud ¨ rI
¯

¨Dd ¨

´

Vd ¨ rI
¯1

“ Ud ¨ rI ¨Dd ¨ rI ¨V
1
d “ Ud ¨Dd ¨V

1
d.
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F Algorithm for newly-acquired customers

With reference to (10), once we have estimated the full model using the calibration data, we can

form first impressions of newly acquired customers using the following procedure:

Algorithm 1 Forming first impressions

Input A sample of the population parameters drawn from the posterior tΘmu
M
m“1

Acquisition characteristics Aj of focal customer j.
Output A sample of βyj drawn from ppβyj |Aj ,Dq
for all dÐ 1 : S do

Draw Θd „ p pΘ|Dq from sample tΘmu
M
m“1

Draw Zjd „ p pZj |Θd, Ajq Ź Using MCMC, HMC or VI
Compute βyjd Ð µyd `Wy

d ¨ z
1
jd

end for

Return
!

βyjd

)S

d“1

Note that the step “Draw Zjd „ p pZj |Θd, Ajq” involves sampling from a posterior distri-

bution for which we do not have access to a closed form distribution. Instead, using the approxi-

mation described in (10), we use HMC to approximately sample from this posterior for each draw

Θd „ p pΘ|Dq. Note that as in this sub-model, only Zj of the focal customer j is unknown, an

HMC algorithm that samples from this posterior is computationally fast even if this algorithm has

to be run inside the loop for each value of d.
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G Empirical application: Additional results

G.1 Possible sources of endogeneity in the model components

Like most demand models including firm’s marketing actions, we face the risk of introducing en-

dogenous variables in our model, potentially preventing us from obtaining unbiased estimates of the

customers’ parameters. If that were the case, the relationships between acquisition characteristics

and demand parameters captured by the model would likely reflect the firms strategies, and not

the true underlying interrelations that the FIM intends to capture.

Given the intended applications for this modeling framework, there are three mechanisms by

which endogeneity concerns would arise: (unobserved) temporal shifts that systematically affect

both the time-varying covariate and the overall demand, static targeting rules, whereby some cus-

tomer characteristics (unobserved to the researcher) makes a customer more/less prone to receive

marketing actions, while such a characteristic is also correlated to other components of the model,

and dynamic targeting rules, whereby the presence/absence of the marketing action is driven by

an unobserved customer state, which is also correlated with the individual propensity to transact

with the firm. The former case is likely to be present if, for example, the firm introduced products

or ran specific campaigns only when periods of lower/higher level of demands were expected. The

second case corresponds to situations in which marketing actions such as e-mails are prioritized to

customers of certain characteristics, for example, those who usually transact online, which is likely

to be correlated with one of the acquisition characteristics. The third case is that in which the firm

targets only customers who exhibit a behavior that is correlated with demand, for example, send

an email to customers who have visited the online store in the last week, or those who abandoned

a basket before purchase, etc.

First, we explore the extent to which these phenomena might present in our application.

According to the managers of the focal firm, marketing actions are decided in two steps. First,

the firm chooses periods in which it will engage in promotional activity (i.e., run a marketing

campaign). This decision is made from the headquarters, runs several times through the year

(with special campaigns run during the holidays) and affects all markets simultaneously. Second,

managers in each focal market choose the set of customers who will receive each campaign, with the
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proportion of customers not being determined consistently. The only variable that some markets

include in their targeting rules is recency (i.e., time since last purchase). The introduction of

new products follows a similar process — i.e., the decision being made globally, the implementation

affected also by local factors such as distribution shocks in each of the markets — with the main

difference being that the second step does not vary across customers of the same market.

Therefore, regarding potential (omitted) temporal shifts, the only variable that could sys-

tematically affect the presence/absence of promotional activity in all markets is the holiday season,

which is not omitted as it is included in the model. Regarding (static) targeting rules, we confirm

with the firm and verify with the data that these were not present in our application. Nonetheless,

it is worth noting that when such targeting rules are present (e.g., the firm contacts customers based

on demographic information), because the model includes unobserved heterogeneity on purchase

frequency (first element of βyi ), the identification of the individual-level sensitivity to promotional

activity comes mainly from individual differences across periods, for which we have rich variation

during the four years of available data. Finally, regarding dynamic targeting rules, it is indeed

the case that some customers (in the most sophisticated markets) are more/less prone to receive

emails and DM based on their purchase activity. However, our model not only includes unobserved

heterogeneity on purchase frequency — capturing the customers’ base level of activity — but also

includes the recency of purchase, alleviating the endogeneity concerns arising from potential cor-

relation between the firm’s targeting policies and customers’ propensity to transact in a particular

period.

To conclude, given the business nature of our application, the rich variation in our data (Sec-

tion 5.1.2, Marketing actions), and our model specification, we argue that the potential endogenous

nature of the marketing actions is not a main concern in this research. Nevertheless, in situations

where these conditions do not hold (due to different strategic behavior by the firm or for data

limitations), the demand model should be adjusted to account for the firm’s targeting decisions.

Given the flexibility of our modeling framework, those adjustments would merely involve extend-

ing the demand model to capture unobserved shocks between firm’s actions and individual-level

responsiveness (Manchanda et al. 2004) or adding correlations between firm decisions and unob-

served demand shocks through copulas (Park and Gupta 2012), depending on how these actions
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are determined by the firm. Those changes would only affect the demand (sub)model and not the

overall specification of the FIM.

G.2 Exploring the latent factors

Figure G.11 shows the posterior distribution of weight variances α for each one of the 13 traits. As

described in Appendices C.1 and D.7, each trait parameter αk controls whether traits are activated

by regularizing the weights (Wy and Wa) related to the k’th trait.

Figure G.11: Posterior distribution of α.
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We conclude that the first 6 traits carry most of the weight at “connecting” acquisition

and demand variables. (Note that the convergence of these parameters, in Figure G.12, shows no

evidence of label switching or rotation of these traits.) This is not to say that the other traits

irrelevant. In turn, those other traits add to the prediction accuracy of the model. However, for

deriving insights from the model parameters, we choose to explore the handful of traits that carry

most of the information.

Following the discussion in Appendix D.7, we plot in Figure G.13a the posterior density of

the computed pseudo-α for each upper trait for the FIM model used in our empirical application

(N1 “ 13, N2 “ 5). We find that the relevance of the fifth upper traits is significantly lower than

the relevance of the first three traits. This result suggests that N2 “ 5 is enough to capture the
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Figure G.12: Convergence of α.
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non-linear interrelations present in the data. For robustness, we estimate another FIM specification

with N2 “ 2 instead, and we find that all upper traits are relevant, suggesting that N2 “ 2 may

not be enough to capture the non-linear relationships present in the data.
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Figure G.13: Posterior distribution of pseudo-α1.

(a) FIM (N1 “ 13, N2 “ 5).
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(b) FIM (N1 “ 13, N2 “ 2).
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G.3 Latent attrition benchmarks models

We estimate three additional non-nested benchmark models (borrowed from the CRM literature)

that do account for latent attrition: (1) Linear model with marketing actions + logistic attrition

process (without acquisition covariates), (2) Linear model (without marketing actions) + logis-
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tic attrition with acquisition covariates, and (3) Linear model with marketing actions + logistic

attrition with acquisition covariates.

For all the aforementioned models we define purchase incidence (yit) given attrition, which

we denote as hit, and we have that ppyit “ 1|hit “ 1q “ 0, pphit “ 0|hit´1 “ 1q “ 0, and

pphit “ 1|hit´1 “ 0q “ logit´1
”

βhi

ı

,

where βhi is a (scalar) parameter that captures the individual log-odds of attrition. In all specifi-

cations, we model the purchase incidence parameters βyi as a linear function of acquisition charac-

teristics as described in Appendix D.3.2.

The models differ in the inclusion of marketing actions into the demand given attrition

component and modeling of the attrition parameter βhi as displayed in Table G.10.

Table G.10: Latent attrition benchmarks models.

Demand Attrition parameter
ppyit “ 1|hit “ 0q βh

i

Latent Attrition

w/ Acq. logit´1
rβy

i1 ` αms βh
i “ µh ` Γh ¨Ai `∆h ¨ xa

mpiq ` u
h
i

w/ Mktg. Actions logit´1
”

xy
it
1
¨ βy

i ` αm

ı

βh
i “ µh ` uhi

w/ Acq.+Mktg. Actions logit´1
”

xy
it
1
¨ βy

i ` αm

ı

βh
i “ µh ` Γh ¨Ai `∆h ¨ xa

mpiq ` u
h
i

Note that in all specifications we model jointly the unobserved individual components of

purchase incidence and attrition parameters by ruy
i , u

h
i s „ N p0,Σyhq.

G.4 Details on the (Machine Learning) benchmark models

We estimate the Feed-Forward DNN model (hidden layer with ReLu as activation function, sigmoid

output and cross-entropy loss) using package torch in R. We select the value of the weight decay

based on the loss calculated using hold-out data in the training sample. After evaluating the values“

0.01, 0.005, 0.001, 0.0005, 0.0001, the value that provides better performance is 0.0001, which we use

to estimate the model on the full training sample using 10 epochs. We set the number of hidden

dimensions to 128 after corroborating that larger dimensionality does not lead to better fit of the

model.

We estimate the Random Forest (RF) using the package ranger in R. We finetune the number

of trees (num.trees), number of variables to possibly split at in each node (mtry), and fraction to
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sample (sample.fraction) via cross-validation using the training sample. The resulting values, which

we use to estimate the model in the full training data are, num.trees“ 1000, sample.fraction “ 0.3,

mtry “ 6.

G.5 Interpreting the latent traits

Finally, we further explore the posterior estimates of the (lower layer) hidden traits and their rela-

tionship with the demand and acquisition parameters to provide additional insights into customer

traits and behaviors. We begin by analyzing which latent traits capture the most salient relation-

ships in the data. We do so by exploring the posterior estimates of the parameters governing the

ARD component of the model and find that six traits carry most of the “weight” at connecting

acquisition and demand parameters. (Please see Appendix G.2 for details.) Then, we investigate

the correlations among these traits (Table G.11), exploring whether customers that score high in

a particular trait also score high (or low) in another trait. Note that these traits do not capture

segments in the population (e.g., groups of customers of similar characteristics) but rather traits

that capture the multiple dimensions of customer behavior. In other words, every customer has

a score for each of the traits, being not only possible but very likely that customers score high in

more than one trait. In our data, customers who score high in Trait 4 also tend to score high in

Trait 6 (correlation“ 0.553). On the contrary, those same customers have the tendency to score

low in Trait 5 (correlation“ ´0.268).

Table G.11: Posterior mean of correlations across customers of individual lower level traits
z1
i .

Trait 1 Trait 2 Trait 3 Trait 4 Trait 5

Trait 1 1.000
Trait 2 -0.144
Trait 3 0.101 -0.113
Trait 4 0.130 0.185 0.170
Trait 5 -0.026 -0.141 -0.057 -0.268
Trait 6 0.129 0.242 0.258 0.553 -0.361

An obvious question to ask is: What do these traits represent? To answer that question we

compute the posterior mean of the weights of each of the rotated trait on each of the acquisition

and demand parameters (Table G.12). Looking at the weights to the demand parameters, we

learn that the first trait is the most relevant in explaining heterogeneity in the base propensity

to buy. Scoring high on this “high-frequency” trait also relates to a positive response to product
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introductions in future demand. This first trait is negatively correlated with whether the first

purchase was made online and whether that purchase contained a product in the Home category;

but positively correlated with whether the customer purchased a product in the Hair Care category.

Interestingly this trait is also positively correlated with first transaction baskets containing products

that score high on dimension 4 of the Basket Nature product embeddings. Moreover, customers

that score high on this trait are more likely to buy at their first purchase smaller sized products

and travel sized products.

Table G.12: Rotated traits weights’ on acquisition and demand variables

Parameter Trait
1 2 3 4 5 6

Demand (Wy)
Intercept 0.133 0.129 -0.106 -0.072 -0.002 0.024
Email -0.018 -0.016 0.046 0.027 -0.015 -0.004
DM 0.010 0.038 -0.003 -0.001 0.013 -0.004
Product introductions 0.044 0.085 0.001 -0.029 -0.026 0.009
Season -0.025 0.058 0.027 0.085 0.004 0.005

Acquisition (Wa)
Avg. price (log) -0.109 0.022 -0.644 -0.370 0.039 0.313
Amount (log) -0.021 0.076 -0.541 0.305 0.209 0.425
Quantity (log-log) 0.074 0.066 0.050 0.647 0.174 0.130
Package size (log) -0.143 0.052 -0.087 -0.205 0.016 0.217
Holiday 0.029 -0.110 0.053 0.159 0.085 0.170
Discount 0.298 -0.073 0.280 0.414 0.133 0.029
Online -0.382 1.368 0.581 6.830 0.019 0.146
New product 0.007 0.216 -0.283 0.544 0.354 0.234
Travel 0.470 -0.928 0.440 0.724 0.413 0.037
Category: Body Care 0.248 -4.922 -0.112 2.916 -0.072 -0.016
Category: Body Perfume -0.025 0.436 -1.152 0.554 0.462 0.079
Category: Face Care 0.352 0.610 0.051 0.745 0.234 0.718
Category: Hair Care 1.267 1.178 -0.514 1.930 -0.631 -0.595
Category: Home -1.097 -0.051 -0.336 1.836 1.073 -0.417
Category: Kits 0.285 0.227 -0.469 0.803 -0.100 0.225
Category: Make Up 0.377 0.528 0.334 1.149 -0.137 0.001
Category: Others -0.134 0.230 0.623 1.845 0.387 0.029
Category: Services -0.006 0.110 -0.501 5.762 -0.545 0.102
Category: Toiletries 0.239 0.733 0.200 1.190 0.607 -0.268
BasketNature dimension 1 -0.104 -0.022 -0.071 0.083 0.078 -0.112
BasketNature dimension 2 0.042 0.012 -0.011 -0.003 0.110 -0.035
BasketNature dimension 3 0.193 0.082 0.034 -0.040 -0.180 0.153
BasketNature dimension 4 0.200 0.105 -0.021 0.136 -0.167 0.005
BasketNature dimension 5 -0.035 0.003 0.001 0.025 0.009 0.154
BasketNature dimension 6 0.120 -0.017 0.141 -0.102 0.012 0.010
BasketDispersion dimension 1 -0.150 0.012 -0.166 0.256 0.237 -0.238
BasketDispersion dimension 2 -0.033 0.026 -0.105 0.196 0.114 -0.151
BasketDispersion dimension 3 -0.045 -0.094 -0.155 0.379 0.039 -0.120
BasketDispersion dimension 4 0.113 0.086 -0.216 0.406 -0.087 -0.082
BasketDispersion dimension 5 -0.137 0.123 -0.154 0.360 0.155 -0.195
BasketDispersion dimension 6 -0.033 -0.020 -0.159 0.462 0.078 -0.160
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Another interesting trait is number four, which is associated with lower propensities to

buy (intercept) and higher activity during the holiday season (Season variable). This “holiday-

customer” trait is positively correlated with whether customers have been acquired online and

during the Holiday season. This trait is positively associated with less expensive products and

more units on the first transaction. With respect to the type of products associated with the first

purchase, customers that score high on this trait are more likely to buy in the Body Care, Hair Care

and Home categories. (Note that this trait is capturing some of the associations among acquisition

variables reported in Table 3 — e.g., [Online-FaceCare]“ 0.48 — allowing the model to clean redun-

dancies in the acquisition characteristics and tie the main trait to demand variables.) Finally, this

“holiday-customer” trait is related with very diverse baskets (with respect to the type of products

purchased in the first transaction), as indicated by its positive weights on Basket dispersion in all

six dimensions.

G.6 FIM predictive accuracy using in-sample customers

Table G.13 shows the performance of all models on the Training sample. The first two columns

show the in-sample fit for each of the models, for which we compute log-likelihood and Watanabe-

Akaike Information Criterion (WAIC) (Watanabe 2010). Columns 3 through 6 show different

measures of out-of-sample prediction accuracy, computed for customers in the training sample, but

using the time periods that were not included in the estimation (i.e., periods after April 2014). We

compute log-likelihood as well as the root mean square error (RMSE) for behavioral predictions. In

particular, we compare the predicted and actual number of transactions at the observation level (i.e.,

at the customer/period level), at the customer level, calculating the total number of transactions per

customer (in “future” periods), and at the period level, computing the total number of transactions

per period. While the HB benchmark model fit the in-sample data better than our proposed model,

the FIM outperforms all benchmarks in the out-of-sample predictions. In other words, whereas the

hierarchical models are very flexible at capturing heterogeneity in the training data, such a model

is likely overfitting the data, as reflected in the out-of-sample predictions. On the other hand, the

FIM forecasts the out-of-sample behavior of existing customers with greater accuracy.
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Table G.13: Model fit and prediction accuracy for the Training sample

In-sample Out-of-sample (future periods)

Log-Like WAIC Log-Like
RMSE

Model Observation Customer Period

HB - Linear ´7843.0 17807.8 ´5511.1 0.202 0.723 62.841
Latent Attrition w/ Acq ´7880.1 17507.7 ´6126.5 0.201 0.750 78.810
Latent Attrition w/ Mktg. Actions ´7781.1 17715.5 ´5786.0 0.206 0.767 74.525
Latent Attrition w/ Acq+Mktg. Actions ´7612.8 17438.2 ´6476.8 0.209 0.812 81.143
Bayesian PPCA ´8482.4 18361.4 ´5137.2 0.191 0.573 35.696
Feed-Forward DNN ´´ ´´ ´´ 0.189 0.556 53.410
Random Forest ´´ ´´ ´´ 0.193 0.616 133.598
FIM (N1 “ 13, N2 “ 5) ´9135.4 18885.7 ´5096.4 0.190 0.533 32.313

Other FIM specifications
FIM (N1 “ 12, N2 “ 2) ´8654.0 18555.7 ´5097.2 0.191 0.558 32.612
FIM (N1 “ 12, N2 “ 5) ´8952.1 18927.6 ´5116.7 0.190 0.541 32.762
FIM (N1 “ 13, N2 “ 2) ´8587.6 18399.0 ´5140.1 0.192 0.578 35.454
FIM (N1 “ 14, N2 “ 2) ´8683.6 18531.9 ´5131.8 0.191 0.561 33.824
FIM (N1 “ 14, N2 “ 5) ´8613.9 18465.3 ´5147.6 0.191 0.571 34.423

G.7 Population distribution and individual-level posterior distributions

Figure G.14 summarizes the inferred individual posterior distributions of the demand parameters

of Test customers using their acquisition characteristics. The top row of Figure G.14 shows the

degree of heterogeneity that the FIM infers. How uncertain are those inferences at the individual

level? In order to answer that question, for each demand parameter, we sort customers based

on their posterior means, and compute their 95% CPI. The second row of Figure G.14 shows the

uncertainty at the individual level that the model can infer these parameters: each customer is

represented horizontally, where the shaded area shows their 95% CPI and the white line, their

posterior mean. Using this figure we can show that for the case of the intercept of the demand

model, can clearly separate some customers based on their acquisition characteristics: the bottom

customers in the figure (i.e., those with individual posterior means between -2.5 and -2) have clearly

higher intercept than the top customers (i.e., those with individual posterior means around -4) as

the 95% CPI of the latter group does not overlap with the posterior means of the former.
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Figure G.14: Population distribution and individual-level posterior distribution for cus-
tomers in the Test sample. The top row shows an histogram of individual-
level posterior means for each demand parameter. The bottom row shows
customers sorted by posterior means, where the shaded area and the white
line represent the individual-level 95% CPI and posterior mean, respectively.
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