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Abstract

We introduce a probabilistic machine learning model that fuses customer click-stream
data and purchase data within and across journeys. This approach addresses the critical
business need for leveraging first-party data (1PD), particularly in environments with
infrequent purchases, which are characterized by minimal or no prior purchase history.
Combining data across journeys poses a challenge because customers’ needs might
vary across different purchase occasions. Our model accounts for this “context het-
erogeneity” using a Bayesian non-parametric Pitman-Yor process. By drawing from
within-journey, past journeys, and cross-customer behaviors, our model addresses the
“cold start problem,” enabling firms to predict customer preferences even without
prior interactions. Notably, the model continuously updates the inferred preferences
as customers interact with the firm. We apply this model to data from an online travel
platform, revealing significant benefits from consolidating 1PD from both current and
previous customer journeys. This integration enhances managers’ understanding of
customer needs, allowing for more effective personalization of marketing tactics, such
as retargeting efforts and product recommendations, to better align with customers’
dynamic preferences.
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1 Introduction

Amid stricter privacy regulations on third-party sources like cookies and data brokers,
marketers are increasingly leveraging first-party data (1PD) for marketing strategies,
focusing on insights from their internal channels (Murphy, 2022). The implications
of limited data access are more pronounced in situations with infrequent purchases.
To compensate for the limited history of transactions from the same customer, firms
often rely on digital footprints from customer-firm interactions on the company’s own
channels, such as search queries, clicks, and filtering of alternatives. This collection
of behaviors is what we refer to as the first-party customer journey, with each journey
encapsulating the entirety of behaviors collected by the company as customers navigate
towards fulfilling distinct needs. Despite the potential of 1PD, many firms struggle
to fully leverage these data sources (Huberman, 2021), particularly when it comes to
combining various types of customer interactions and weighting them appropriately
across different journeys.

This research proposes a modeling approach that enables firms to harness rele-
vant information from first-party customer journeys by integrating data from various
customer interactions with the company. Our method utilizes information across dif-
ferent journeys and customers, aiming to enhance understanding of customer needs,
even when historical data is scarce. The primary challenge lies in extracting valu-
able insights from pre-purchase interactions, as these interactions do not always result
in a purchase. Additionally, determining the appropriate weighting and integration
of pre-purchase data with actual purchase information poses a significant challenge.
Moreover, the variability in customer needs across different journeys complicates the
ability to leverage data across journeys.

To address these issues, we introduce a probabilistic machine learning approach
that links customer click-stream data over the course of a journey and integrates that
information across journeys, and across the customer’s history of purchases. The model
accounts for what we call context heterogeneity, which are journey-specific preferences
that capture customers’ journey-specific needs and allow us to combine information
across journeys with possibly varying needs. We model the journey decisions on what
to search, what to click, and what to buy to be both a function of customers’ stable
preferences and the unique needs of the focal journey’s context. Intuitively, contexts
are unobserved states that capture need-specific preferences (e.g., food preferences in
a special dinner might differ from preferences in a quick lunch). We uncover those
contexts non-parametrically using a Pitman-Yor process, which allows for the creation
of new contexts that have not been previously observed as new journey observations
arrive.

The model leverages three primary sources of information collected from the com-
pany’s own channels: (1) within-journey behavior, such as search queries and clicks
during the focal journey; (2) past journeys’ behavior, encompassing previous searches,
clicks and purchases; and (3) cross-customer behavior, analyzing actions of other cus-
tomers with similar search patterns. The within-journey data helps identify unique,
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journey-specific preferences, while data from past journeys reveals the customer’s
stable preferences. Cross-customer information supplements potentially sparse data
from the first two sources, enhancing our model’s ability to predict preferences. This is
particularly useful in cases where customers are unidentifiable— such as prior to log-
ging in or their first purchase — and when past behaviors cannot be linked to a specific
customer, for instance, due to disabled cookies or privacy regulations. By leveraging
within journey information and integrating across-customer data from similar jour-
neys, our approach effectively addresses the ‘cold start problem,” enabling firms to
infer preferences even before customers make their first purchase or are otherwise
identified.

The model offers valuable insights for managers, highlighting the importance of
information collected during the customer journey for a near-real-time analysis of
customer preferences as the customer journey progresses. Dynamically assessing con-
sumers’ preferences, allows marketers to improve the personalization of retargeting
efforts and product recommendations. Additionally, the contexts revealed by the model
provide useful dynamic segmentation dimensions aiding in the design of user experi-
ences or product features tailored to specific customer needs.

Our modeling approach is particularly suited for dynamically inferring customer
preferences at the journey level, enhancing the effectiveness of personalized market-
ing strategies. Compared to structural search models, our method is more flexible,
does not make assumptions about click order in the search process, reduces computa-
tional complexity, scales to large datasets, and integrates diverse data types, including
past journeys, search queries, and within journey click-stream data. Compared to tradi-
tional machine learning (ML) approaches, our model maintains predictive validity and
is more robust across prediction tasks, striking a balance between flexibility and inter-
pretability. Our model permits the identification of interpretable latent journey-specific
customer needs and a combination of both observed and unobserved heterogeneity.

We apply the model to customer journey data from a major online travel platform,
allowing the firm to dynamically infer customer preferences for air travel attributes
such as airline alliances, number of stops, and price sensitivity. For example, relative
to what the platform can predict at the start of the customer journey (the query page),
incorporating the initial two clicks from the current journey improves the prediction of
a customer’s preferred airline alliance by 25%, with accuracy increasing by 73% after
five clicks. This demonstrates the model’s ability to refine predictions in real-time as
the journey progresses, a sharp contrast with traditional panel-data models (e.g., Rossi
etal., 1996), which rely solely on purchase data and cannot update inferences based on
real-time 1PD before a purchase is made. For example, our model predicts the actual
product chosen ten times more accurately than models relying solely on historical
purchase data. In a retargeting exercise, our model enhances business outcomes, such
as increasing the click-through rate (CTR) for recommended products by as much as
28% relative to a heuristic retargeting using the last clicked product.

Our model addresses the “cold start problem,” which arises when there is no his-
torical data available for customers. We mitigate this in two ways. First, our model
integrates information from other customers’ journeys through their search queries.
For example, our model improves the prediction of airline alliance choices by 38%
at the start of a new journey compared to models that do not incorporate past journey
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data. Second, our model leverages data from the current journey itself to compensate
for this gap. With just five clicks in the current journey, our model achieves predictive
power similar to models that utilize past journey data. This integration of data across
first-party customer journeys is particularly valuable for understanding the preferences
of new or unidentifiable customers—a growing challenge given the increasing preva-
lence of platforms that allow search without logging in or that are restricted in storing
customer historical data.

Beyond enhancing predictions, our model provides valuable insights into the dif-
ferent types of customer journeys by uncovering 22 distinct contexts, each reflecting
specific customer needs and preferences. For instance, one context identified by the
model involves “one-way solo domestic trips,” characterized by last-minute flight
searches, unaccompanied passengers, and a preference for major airlines. Another
context, termed “Family vacations in the Caribbean,” includes customers seeking
roundtrip flights for group travel, with a strong preference for non-stop routes and
bookings made several months in advance.

Main contributions and related literature

Overall, this paper contributes to the literature by introducing a method to infer cus-
tomer preferences in scenarios characterized by sparse purchase history and varying
customer needs between transactions. This research is crucial for data-driven orga-
nizations aiming to optimize their use of 1PD amid tightening data regulations and
increasing emphasis on customer privacy.

Our research builds on the rich literature in marketing that uses transactional data
to estimate consumer preferences at the individual level (Rossi et al., 1996; Allenby &
Rossi, 1998). These models are widely used in contexts where individual transactions
are available, but challenges arise in situations with limited transaction data. The
digital environment offers opportunities to observe the customer journey, including
click-stream activity and past purchases, which we seek to combine effectively in our
model.

Methodologically, our work aligns with probabilistic machine learning models in
marketing (Dew et al., 2024), particularly Bayesian non-parametric models (Ansari &
Mela, 2003; Kim et al., 2004; Braun & Bonfrer, 2011; Bruce, 2019; Dew et al., 2020;
Boughanmi & Ansari, 2021). We extend this literature by proposing a Pitman-Yor
process to infer the distribution of contexts, essential for fusing information across dif-
ferent customer journeys. This approach contrasts with other models of heterogeneous
purchase occasions like Latent Dirichlet Allocation (LDA) (e.g., Jacobs et al., 2016),
allowing us to non-parametrically determine the number of contexts from the data and
separate how past journeys relate to a focal journey. Similar to Liu and Toubia (2018),
we link search queries to customer preferences; however, we extend this work by
leveraging correlations across multiple behaviors (e.g., queries, clicks, purchases) and
product attributes, making it applicable to sparse, highly specific purchase data (e.g.,
flights). Additionally, our model accounts for customer-specific heterogeneity, allow-
ing the use of past journeys in inferring preferences. Our research also relates to the
literature on context-dependent product recommendations (e.g., Sarwar et al., 2001,
Hidasi et al., 2016, Yoganarasimhan, 2020). While existing methods often require
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extensive data on customer interactions with specific products, our model extracts
preferences for attributes, making it applicable in settings with large, evolving prod-
uct assortments.

Our work also contributes to the vast and rich literature on consumer search and
the use of click-stream data (e.g., Montgomery et al. 2004; Kim et al. 2010; Seiler
2013; Donnelly et al. 2024; see Honka et al. 2024 for an extensive review) that uses
within-journey information to infer customer preferences and predict purchase behav-
ior. These studies have shown that browsing patterns and click-stream data can provide
valuable insights into future customer actions. However, most of these approaches
focus on a single journey, often overlooking the insights that previous journeys can
offer (a notable exception is Morozov et al., 2021, who leverage a panel data of
consumer searches). This limits their ability to capture the full scope of customer
heterogeneity, both within and across journeys. Our research advances this field by
incorporating not only click-stream data but also search queries, providing a more com-
prehensive analysis of customer behavior. By integrating data from multiple journeys,
our approach captures the variability in preferences that can exist from one journey to
another, addressing gaps in the existing literature. This integration allows for a deeper
understanding of how customers’ searching and clicking behaviors change from one
purchase occasion to another, ultimately leading to a better understanding of consumer
decisions.

Substantively, our work contributes to the literature on leveraging alternative
sources of information when data on the main behavior of interest is limited (Iyengar et
al., 2003; Feit et al., 2013; Liu & Toubia, 2018; Padilla & Ascarza, 2021). We highlight
the value of extracting information from both current and previous customer journeys
to infer preferences in the current journey. In terms of managerial implications, our
findings contribute to the literature on the practical value of customer behavior data.
Notable works by Rossi et al. (1996) and Smith et al. (2023) have shown that using
historical purchase data can significantly improve the effectiveness of marketing strate-
gies, from enhancing direct marketing outcomes to boosting profit margins through
personalized pricing. Our study emphasizes the critical role of real-time customer
data, including within-journey click-stream data, in refining personalization tactics
and augmenting marketing efforts.

The paper continues as follows. Section 2 details our modeling framework and
compares it with alternative approaches. Section 3 describes the empirical setting
and estimation procedure. Section 4 presents the results, and Section 5 assesses the
value of 1PD. We conclude with a discussion on the model’s generalizability, potential
limitations, and future research directions.

2 Model
2.1 Model overview
We propose a modeling framework that allows firms to extract the information con-

tained in the various first-party interactions customers have with the focal firm. To
that end, we define the first-party customer journey as the set of all the interactions

@ Springer



384 N. Padilla et al.

observed by a firm during the course of the customer journey aimed at satisfying the
customer journey-specific needs. We highlight several components of this definition.
First, a first-party customer journey only includes the interactions that the firm collects
on its own platforms (e.g., web, apps, call center). We exclude interactions with com-
peting firms aimed to satisfy the same need, as this information is often unobserved to
the focal firm. Note that the customer may start the journey in the focal platform and
end it on another or vice versa. Second, these interactions do not necessarily need to
occur within a single session but might comprise several sessions occurring at differ-
ent times or days. Third, the first-party customer journey comprises the interactions
that a customer has with the focal firm aimed at satisfying a specific need related
to a particular consumption opportunity and/or purchase in a specific category. For
example, a customer who interacts with a food delivery platform to get lunch on a
Tuesday and dinner on a Friday night is aiming at satisfying two distinct needs on dif-
ferent consumption occasions. Hence, we separate these interactions into two separate
journeys.

With this conceptualization of a journey, we develop a probabilistic machine learn-
ing modeling framework that allows firms to combine several sources of 1PD across
multiple journeys — both present and past journeys — and across many customers. The
model flexibly combines multiple types of behaviors, namely search queries, clicks,
filters, and purchases, and can accommodate other behaviors collected by the focal
company via their website/app or other channels. Using this framework, a focal firm
can leverage its 1PD to dynamically infer what a particular customer is looking for as
they advance in their focal journey.

2.2 General model specification

We index customers by i € {1, ..., I}, and their journeys by j € {1, ..., J;}, where
Ji is the number of journeys customer i has undertaken. We use t € {1, ..., T;;} as the
cardinal order of actions (hereafter, step) of customer i in journey j. Then, we specify
a series of (probabilistic) models, b = 1, ..., B for the behaviors observed along the
journey. That is, for customer i in journey j and step ¢, we define

Yo~ gCloj.xl,. Bij). (1

where g captures the probabilistic relationship between the set of journey-specific
query parameters (w;), the customer- and journey-specific preferences (B;;), the
observables (xf’jt), and the customer i’s behavior b, in step ¢ of journey j.! Some
behaviors are modeled at each step ¢ (e.g., customers can click at any step), whereas
other behaviors are modeled once per journey (e.g., customers insert a query only at
the beginning of the journey).?

! Even though we make distributional assumptions on each component of our model, our framework is
general enough to accommodate alternative parametric specifications.

2 To simplify the notation, we omit global parameters per behavior (e.g., controls and error variances), but
these are fully detailed in Web Appendix A.
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We model four types of behaviors: queries, clicks, filters, and purchases. Queries
are defined as a vector of search query variables q;; = [ql- i1s e i M]/, where each
component g;j,, corresponds to a different observed variable (e.g., dates of travel and
number of passengers in online travel). Because these pieces of information are pro-
vided by the customer to obtain a set of product results that match their preferences,
we treat each query variable as an outcome that depends on some unobserved compo-
nent that captures the customer’s need in the focal journey. Doing so allows the model
to easily account for missing query variables, or query variables that are not present
in certain journeys. The query variables could flexibly be binary, categorical, con-
tinuous real-valued, or continuous positive-valued. We model these query variables
conditionally independently given the vector of journey-specific parameters w; by

M
pijle)) = [ p@ijmlojm). )

m=1

Clicks, filters and purchases are modeled jointly in two phases: first, customers
explore products through clicks and potential filtering to form a consideration set, and
then, customers either choose an item from their considered set or decide not to make
a purchase. All of these decisions are guided by a shared set of customer preferences,
denoted as B;;.

We model click choices (yi”j[) as a discrete multinomial choice made at the page
level conditional on customer-journey preferences B;; and the set of product attributes
xl‘l . of each product k shown at step ¢ of journey j,

p (560 1 By (X 3)

The choice set is composed of all products shown on the page at step ¢ and two outside
options: keep searching to get a new set of products, or finish the search process and
move to the purchase decision stage.’

We model filter decisions fij = [ fij1. ..., fijL,,] on aset of L;; attribute levels
(e.g., aspecific airline like United, or an attribute like non-stop), where each component
fije captures whether the customer filters on attribute level £ over the course of the
journey.* Filters are modeled as binary choices on each level conditionally independent
given customer-journey preferences

p®;j1B;) =] p(fijelBij)- @)

=1

After clicking and (possibly) filtering through product results, customers make the
purchase decision (yi’;). For the purchase decision, we define the consideration set

3 We control for ranking effects on search following Ursu (2018) by incorporating the log of the position
of product k within the results page in xfj k-

4 Filters are observed much less frequently than clicks; therefore, we model whether the customer uses a
particular filter at any time during the journey, rather than at each step 7.
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Cij as the set of products that have been clicked on at least once during the course
of the journey. We model purchase as a discrete choice among the alternatives in the
consideration set C;; plus the outside option of not purchasing

p (yf;- | Bij. Cijs {Xijk}kec,»,)« (&)

Clicks, filters and purchase decisions are all driven by customer-journey product-
attribute preferences B;;, whereas queries are solely driven by journey-specific
parameters @ ;. (Please refer to Web Appendix A for a detailed description of each
model component.)

2.3 Heterogeneity: The role of contexts

To facilitate the integration of information within and across journeys, the model
accommodates heterogeneity in w; and f;;. In settings involving repeat purchases of
frequently purchased items like consumer packaged goods, it is typically assumed that
a customer’s preferences are stable across journeys (e.g., Rossi et al., 1996, Allenby
and Rossi, 1998), and are represented by an unobserved individual-specific compo-
nent.> However, in scenarios such as ours, customers often display journey-specific
preferences for journeys involving, for example, domestic versus international flights
or traveling for business versus leisure. This variability in preferences complicates the
integration of journey data across journeys. To address this issue, our model introduces
Jjourney contexts, which are latent components that represent specific types of journeys
with shared needs across customers.

Methodologically, incorporating context-specific preferences presents several chal-
lenges. First, these journey contexts are unobserved and therefore must be inferred from
the data. Second, unlike models such as hidden Markov models, there is no system-
atic transition from one context to another, complicating the identification because
the behavior in a previous journey may not predict the current context. Third, the
exact number of contexts would likely vary by setting, and therefore we want it to
be determined from the data. Lastly, we want to provide enough flexibility to the
model such that it will be able to capture meaningful contexts as informed by both the
query and the customer click-stream behavior (e.g., a “summer family trip” context
that bundles together journeys that are more likely to be international trips, with more
than one adults and with children, which may involve strong preferences for non-stop
destinations and moderate price sensitivity).

To overcome these challenges, we model the journey context as a non-parametric
latent segmentation over journeys across customers, using information from the query
variables (@ ;) as well as the preferences of these journeys that drive clicks, and pur-
chases (B;;). Specifically, we separate f;; into an individual customer heterogeneity

5 An exception is Jacobs et al. (2016), which posits that different motivations influence varying basket
selections.
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component and a context heterogeneity component that varies from one journey to
another as

Bij=mni+p; (6)

where p; is an individual-specific vector that is shared across all journeys of a particular
customer, and p; is a context-specific vector that “shifts” customers’ preferences
depending on the need of the specific journey but is shared by all customers with the
same need.®

We account for customer heterogeneity by modeling the individual specific vector
of parameters following a multivariate normal distribution:

n; ~N(O, X). N

We further define y ; as the vector of all context-specific parameters,

Query Clicks, filters, and purchase

which includes the set of parameters that determine behaviors in (1).

We model context heterogeneity non-parametrically assuming that the context-
specific component of a journey, y ;, is drawn from an unknown discrete distribution F,
which we call the context distribution. We assume that F' is drawn using a Pitman-Yor
Process. The Pitman-Yor Process is a distribution over infinite almost surely discrete
measures used in non-parametric Bayesian models (Pitman and Yor, 1997). Thus, we
draw the context-specific parameters, y ;, from the context distribution F, and we
place a Pitman-Yor process prior on the context distribution F'. That is,

y;~F. ©)
F ~PY(W,a, Fy), (10)

where 0 < d < 1 is a discount parameter, a > —d is a strength parameter, and Fy is
a base distribution over the same space of y i such that Fj is the mean distribution of
F.

Note that when d = 0, the Pitman-Yor process reduces to a Dirichlet process with
concentration parameter a and base distribution Fj. The addition of the parameter d
allows the drawn distributions from a Pitman-Yor process to exhibit a more flexible
long-tail distribution of weights for the mass points, as opposed to the weights decaying
exponentially when drawn from Dirichlet processes. This means that the Pitman-Yor
process allows for more distinct mass points in the drawn distribution to appear as
new observations come in. This feature of the Pitman-Yor process allows the model
to capture new contexts that may not have been observed before or contexts that may

6 Note that because most customers are observed for a few journeys, often a single journey, we cannot
directly include a customer-journey-specific term.
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happen rather infrequently. In Fig. 1, we show that as more observations come in, the
expected unique number of clusters (i.e., contexts in our model) grows for both the
Dirichlet process (left most figure in Fig. 1) and the Pitman-Yor process with varying
values of the discount parameter d. In contrast to the Dirichlet process, the Pitman-
Yor process allows for more flexible patterns of how these unique clusters/contexts
appear in the data. Moreover, using a Pitman-Yor process as a prior for our context
distribution, similar to the Dirichlet Process, allows our model to infer the number of
contexts directly from the data.

We express the context distribution F in terms of the stick-breaking representation
of the Pitman-Yor process (Ishwaran & James, 2001), F = Zfil 786, (-) where 8¢ (-)
is the indicator function and

O ~ Fo, (1)

me = Ve [ = V). V. ~Beta(l —d,a+c-d). (12)

We can then rewrite (9), using the location vectors 6. and a context assignment
variable z; € {1, 2, ...} such that

v =10;
p(zj =c¢) =me. (13)

These context assignment variables are useful in understanding the journey-specific
need of each journey.

We provide some intuition on how the Pitman-Yor process prior in this model
captures the contexts non-parametrically, which we illustrate using Fig. 2. Each F
drawn from the Pitman-Yor process is a distribution over contexts, where each location
¢ = 1,2, ... represents a different context (e.g., the summer family vacation, an east-
coast business week trip). For any new journey that a customer undertakes, the model
draws its journey-specific parameter, y ;, from this distribution of contexts, F'. This

d=0 || d=025 [ d=05 |

401

204

Expected number of clusters

0 5 100 150 200 0O 50 100 150 200 0 50 100 150 200
Number of observations

Fig.1 Expected number of clusters/contexts from a Dirichlet Process (d = 0, left) vs. a Pitman-Yor process
(d = 0.25, middle; and d = 0.5, right)
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Vi~ F
0.6 0.45 * f;: summer family vacation
0.4 0.35 * @y east-coast business week trip
s 0.19
0.2 ® f3: honeymoon
0 H 1-1072
6, 6, 05 ' *
0

Fig.2 Example of a context distribution drawn from a Pitman-Yor process prior

drawn distribution is characterized by two main sets of parameters, the locations 6,
and the context sizes .. The locations 6. indicate the set of query, click, and purchase
preferences that are associated with context c¢. The context size m. represents how
likely is context ¢ to be drawn.

We note that due to the infrequent purchase behavior in our data, in contrast with
other purchase behavior mixture models (particularly the LDA implementation by
Jacobs et al., 2016, where “topic” distributions are individual specific), we assume a
common context distribution across customers. In settings with more frequent jour-
neys, one could extend our framework to include customer-specific contexts. That
being said, our model captures customer-specific preferences through u;.

Next, we describe the sources of information that inform the different parameters
of the model. We discuss the identification of the model parameters in Section 3.4,
after we describe our empirical setting.

2.4 Sources of information in the model

Our model combines multiple flows of information (queries, clicks, filters, and pur-
chases) from different sources (past and current journeys) to learn what customers
might be looking for on different purchase occasions. Our model naturally weights
the different pieces of information through the likelihood and the different components
in the model, which we describe next. Figure 3 depicts the main assumptions about the
data-generating process (for simplicity, the figure omits dispersion across customers,
model priors, and filter behavior), which helps to understand how the model fuses
information within and across journeys to infer what customers are looking for.
Consider a customer i in a journey j (focal journey) where we have observed ¢ steps
that include clicks (and filters), if any. As an ongoing journey, purchase, yi[;, has not
been observed yet. How does the model leverage multiple sources of information to
understand the customer’s need in this particular journey? First, the model learns from
the information provided by customer i during the course of the focal journey j. The
queries inform to which context this focal journey most likely belongs to. Queries are
a function of query parameters ;; which, in turn, are determined by z;, the context
the journey belongs to. The context indirectly informs preferences, B;;, via p;. Clicks
(and filters) provide a strong signal of what the customer wants, as both outcomes
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J1 (past) j (focal)

i (customer)

Fig.3 Simplified directed acyclical graph of the data generating process. Variables in shaded (white) circles
are observed (unobserved). We omit from the graph the dispersion across customers (%), the consideration
set (C;;), parameters a and d from the Pitman-Yor process, and all the priors. To simplify the notation, we

also omit filters, f;;, but for all purposes of this figure, we can consider them as part of the clicks, yicj“.

Parameters w j and p ; are known (deterministic) given the context assignment, z j, and the context locations
{6.} (analogous for wj, and 0j ). Similarly, the vector of preferences, ,Bij, is also deterministic given 0j

and p; (B;ij = mi +p;)

are a direct function of preferences, B;; (Egs. 3 and 4). These two assumptions allow
our model to integrate information across these different types of actions. Moreover,
clicks in the focal journey also inform about the products being currently considered
in the journey.

Second, the model learns from queries, clicks, filters and purchases made in past
journeys. Those clicks, filters and purchases are all driven by the corresponding pref-
erences of those journeys, all of which share a customer-specific component, u;, with
the preferences for each particular journey. In addition, past queries are related to
the contexts of those journeys because the context shares explanatory power with the
customer stable preferences, ft;, to describe clicks, filters, and purchases in those past
journeys. That is, even though past contexts, z;, and customer stable preferences, u;,
are unconditionally independent, they are not independent when conditioning on past
clicks and purchases, as these are co-determined by past context and stable preferences
jointly. Consequently, past queries through past contexts are related to the preferences
of the focal journey. Our model “weights” past journeys naturally from the degree to
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which these past journeys are related to choices in the focal one. If past journeys are
highly informative of the current journey preferences, a larger source of variation of
Bij comes from p;. Alternatively, if past journeys are less informative, the contexts
will drive the larger share of variation in preferences.

Third, the model learns from other customers whose journeys belong to the same
context as the focal journey. As contexts are unobserved, the assignment of contexts
is probabilistic and the information in other journeys will be shared greatly for those
journeys that are more likely to belong to the same context as the focal journey. This
information allows the model to learn the context location parameters, 6.

2.5 Model estimation and inference: Predicting future activity

The model is estimated on historical data of finished journeys (which may or may not
have ended up in a purchase). Once the model has converged, we can easily draw from
the posterior to summarize the relevant parameters, including contexts and customer
preferences. Importantly, we also want to predict purchase behavior for “ongoing”
journeys, defined as those in which the customer might still be exploring/considering to
purchase. The challenge in these cases is that consideration sets are not fully observed
(as the customer can continue clicking for a while), and thus predicting purchases
requires us to augment products that would be considered before we can predict the
eventual purchase.

Consider an “ongoing” journey j where we observe the query (q;;), clicks (yfj 1)
and filters up to step ¢ (which we denote as £;;; < {1, ..., L;;}). The posterior pur-
chase probability of journey j can be written as

POy Y Lije) = /P(yglyicjl;t,ﬂij)'P(ﬂij|(Iij,yfjl:t,Eijz) -dB;;, (14)
Bij

where p(yi’;. |yi"j1:t, Bi;) is a conditional purchase probability given preferences and
clicks up to step 7, and p(B;;|qi;, yf/l:z* L;;j+) is the posterior distribution of the pref-
erences given the partial information.

There are two probabilities inside the integral. Computing the latter term is straight-
forward as it comes directly from drawing from the posterior distributions of our
model (see details in Web Appendix D). However, computing the former quantity is
more difficult because, to predict a purchase, we need to condition on the customer’s
consideration set, which might evolve after step t. We overcome this challenge by
constructing an augmented (probabilistic) consideration set that includes products
that may be clicked on for the remainder of the journey (i.e., after 7). Specifically, we
compute

POV Bif) =/p<y{}|ﬁ,-j,cl~,~) - p(Cij1¥ii Bij) - dCij, (15)
c,'j
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where the first term is computed directly from the model specification, and the sec-
ond term can be approximated by drawing the consideration set probabilistically. We
approximate this second term by a Monte Carlo simulation where we draw each prod-
uct’s membership to the consideration set from a posterior consideration probability
pk € Cjj yicj 10> Bij)- If the product k has been clicked before step 7, the probability to
be considered is one. If not, we approximate it by a reduced-form XGBoost predictor
function g¢(x, B), as this probability is otherwise untractable for a journey that has
not finished, and thus, we do not observe how many more steps the journey will have.
We train such predictor function using journeys from the training data and 8 drawn
from the posterior distribution. We describe this approach in detail and outline the full
procedure to compute purchase probabilities in Web Appendix E.

2.6 Alternative modeling approaches

Our primary objective is to dynamically infer customer preferences at the journey
level as the journey unfolds, thereby enhancing personalized marketing strategies.
For these strategies to be effective, managers require a methodology with sufficient
predictive validity to accurately infer consumer preferences and act on them. We
discuss alternative possible approaches to achieve this goal.

One could consider the extensive literature on search models, particularly those
based on the sequential (Weitzman, 1979) search model (e.g., Kim et al., 2010,
Koulayev, 2014, Honka and Chintagunta, 2017), which offer valuable insights and
counterfactual evaluations. Although accommodating heterogeneous preferences at
the population level is relatively straightforward, integrating such heterogeneity into a
structural search model to obtain individual-level estimates and updating them as new
information arrives has historically posed challenges. These models are computation-
ally intensive to estimate and struggle to scale with large datasets (a notable exception
being Morozov, 2023). This challenge is amplified when modeling multiple journeys
across customers, as the requisite heterogeneity specification must pool information
across journeys within and between customers, significantly increasing computational
demands.” Inferring preferences at the journey level is essential for tailoring marketing
strategies like retargeting campaigns or product promotions during ongoing searches.
By relaxing structural assumptions (particularly those derived from click ordering),
our model offers both higher flexibility to better match the observed patterns in the data
and computational advantages in both estimation and inference for ongoing journeys.

Moreover, our model seamlessly integrates various types of information: search
queries, filters, clicks, and purchases. While filters have been incorporated into struc-
tural search models (e.g., Chen and Yao, 2017), to the best of our knowledge, our
approach is the first to include search queries in modeling clicks and purchases. This
probabilistic modeling technique enables us to better infer granular preferences at the
journey level by drawing insights from similar journeys of other customers. One lim-
itation of our modeling approach relative to the structural search modeling approach

7 This is the main reason why we do not explicitly compare our model’s predictive performance against a
structural search model.
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is that our approach cannot derive policy invariant parameters for counterfactual sce-
narios that significantly alter market equilibrium, such as airline mergers impacting
flight offerings or significant changes in how information is presented to consumers
affecting search costs. For counterfactual analysis in such scenarios, structural search
models may be more suitable.

Another alternative route would be a fully predictive approach using ML models
such as a neural network. While these models might meet predictive validity goals, they
often lack in providing a deep understanding of customer preferences over attributes,
limiting their applicability to tasks like cross-selling campaign responses. Marketers
often need to decode the black box of ML models to recommend products in different
categories than those the model was trained for. Furthermore, traditional ML models
often do not capture unobserved customer differences as effectively as hierarchical
models and require significant feature engineering, such as selecting which moments
to summarize click and purchase histories. For instance, Smith et al. (2023) demon-
strate that hierarchical choice models outperform random forest and XGBoost models
in leveraging purchase history for targeted pricing. Conversely, our approach models
a comprehensive set of behaviors within a single framework, naturally incorporat-
ing past journeys through posterior distributions. This enables continuous prediction
throughout the customer journey without needing to fully retrain the model. In Sec-
tion 4.4, we compare the predictive performances of our model for ongoing journeys
relative to several ML approaches (see further details in Web Appendix H). Our find-
ings show that across prediction tasks at different stages of the customer journey, our
model performs more robustly than the best ML alternatives.

To summarize, our model strikes a balance between flexibly allowing for within and
across journey heterogeneity and model interpretability. This allows us to facilitate
managerial decisions, such as retargeting, cross-selling, and product recommendation,
where the space of the products is very large and dynamic. Additionally, understanding
customer needs beyond predictions aids in optimizing website design to better meet
those needs (see Section 5.2).

3 Empirical setting

We apply our model to the context of airline ticket purchases using data from one
of the largest worldwide online travel platforms. The dataset contains click-stream
data on the focal platform of 4,500 customers who searched for flight tickets between
May 2017 and November 2017.% For each web page shown to those customers, we
observe the customer ID, the timestamp of when the customer accessed the page, the
search query inputs associated with that page, and the list of results (including the
flight attributes such as price, length, or airline carrier) observed by the customer after
entering the query. The data also contains clicks on specific flights and the confirmation
page for journeys that ended up in a purchase. We observe a total of 5,285,770 flight

8 The focal firm randomly selected 4,500 customers among those that they define as “active” users.
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offers displayed in 106,018 results pages, which resulted in 3,718 flight itineraries
purchased.

3.1 The first-party journey of airline travel

Consistent with our conceptualization of a first-party journey, the journey starts when
the customer lands at the website’s homepage to search for a flight. There are two
types of trips that the customer can choose from: (1) Roundtrip, and (2) One-way.’
For roundtrips, the customer includes an origin and a destination; a departure date for
the portion of the trip from the origin to the destination, known as the outbound leg;
and a returning date for the portion of the trip from the destination back to the origin,
known as the inbound leg. Each leg of the trip is composed by either one non-stop
flight or multiple connecting flights. One-way itineraries have only one direction of
travel.

Note that, as is the case in numerous business settings, a customer journey can be
highly non-linear (Grewal & Roggeveen, 2020). That is, the customer may go back
from each step to enter a new/revised query, to click on alternative outbound or inbound
results, etc. Moreover, this process does not need to occur during the same internet
session, but can occur over the course of multiple days (Lee et al., 2018). Accordingly,
we use the queries in our data to construct a flexible definition of the customer journey
by combining pages/sessions that belong to the same customer with the same “trip
need.” Specifically, a customer journey comprises all sessions that, while they might
have occurred at different points in time, (1) have departing or arrival dates within up
to 4 days; and (2) have origin or destination to close-by airports and cities within a
140 miles range (approx. 225 km.). Once all these pages are combined, we sort them
by timestamp and remove subsequent searches of the same journey after a purchase
is made, to remove the infrequent behavior of customers checking prices of the same
itinerary after purchase. To avoid mislabeling censored and potentially unfinished
journeys as no-purchase journeys, we remove all journeys (where the purchase has
not been observed) in which the itinerary’s first flight departs after our observation
window’s end. This process resulted in a total of 25,402 journeys, corresponding to an
average of 5.6 journeys per customer. The conceptualization of journeys as described
above, rather than simply using individual search queries as sessions, allows us to
seamlessly integrate behavior across sessions that are aimed at covering the same
need. Next, we describe the flow of the roundtrip purchase journey, since the one-way
purchase journey is a nested version of the roundtrip purchase journey.

After a customer lands on the homepage, they start specifying the search query
(see Fig. 4a) by selecting the type of trip to search for (e.g., roundtrip) and filling
multiple fields (all of them required): origin and destination cities/airports, outbound
and inbound departing dates (i.e., “departing” and “returning dates” in Fig. 4a, respec-
tively), and travelers (number of adults and children). The customer then clicks on the
“Search” button, which triggers the platform to search the flight results that match the

9 We drop from our analysis the third type of trip, multi-cities trips, as they constitute a very small portion
of the trips. Moreover, our data does not contain searches on packages (e.g., flight + hotel), and therefore
we focus on journeys over flights only.
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Round trip | One way

Flying from Flying to
New York (NYC-Al Airports) Los Angeles, CA (LAX)

Departing Returning Travelers
11/18/2024 11/23/2024 1 Adult

(a) Example of a query page

Your selected departure. Mon, Nov 18| Change Select your departure to Los Angeles Mon, Novig
6:00pm -9:18pm 6h 18m (Nonstop) fom $367
M| United EWR - LAX roundtrip

N American Aiines
Select your return to New York Sat, Novza

11:30pm - 1:30pm +1 11h Om (1 stop) +$0 :008m - 10:07am S iibnsiop] 4207
\ American Aiines ; B0S - JFK undt = ; :
Details and baggage fees Dot and baggage foce

11:15pm - 7:55am +1 5h 40m (Nonstop) +$44 7:30am - 10:40am 6h 10m (Nonstop) $397
B Aaska Aiines X - JFi undt

B Alaska Airlines FK - LAX

Details and baggage fees Details and baggage fees

: ’ +$65
11:15pm - 9:05am +1 Si150m (Nonstop) ol - 9:20pm - 12:35am +1 6h 15m (Nonstop) $397
0 X T [ X Select

LAX
Details and baggage fees Details and baggage fees

(b) Example of an outbound page results (c) Example of an inbound page results
Review your trip
Mon,Nov1e D T
6:00pm  —  9:18pm 6h 18m, Nonstop s
. % Booking Fee. $0.00
TripTotat: $431.29
SaNovzs " ey .

11:15pm 9:05am 6h 50m, 1 stop

Arrive Sun, Nov 24
Change flights

(b) Example of a flight details results page

Fig.4 Purchase journey steps

information from the query. The website displays the set of results, sorted increasingly
by price, for the outbound itineraries (see Fig. 4b). Each of these itineraries are fully
described by a path of flights that start at the origin airport and finish at the desti-
nation airport. The website clearly displays all relevant information of the outbound
legs of the search results, including price, the total duration of leg, the airline carrier,
the number of stops, and departure/arrival times. Note that for the outbound leg, the
price displayed corresponds to the price of the complete roundtrip itinerary, including
the price of the outbound leg and the cheapest inbound leg that corresponds to the
outbound leg. At this point, the customer might want to explore some of the presented
options (see “Select” below), click “More” to get exposed to more flights, “Filter” to
restrict the characteristics of the flights to be shown, or abandon the search.

If the customer clicks on the “Select” button of one of the outbound offers, the
website displays the set of corresponding inbound results that correspond to the clicked
outbound leg (see Fig. 4c). For those resulting inbound offers, the website displays the
same level of information displayed for the outbound offers (see Fig. 4¢), including
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the extra price of each alternative compared to the minimum price (i.e., the price
displayed in the outbound page of results). Once the customer clicks on the “Select”
button of one of the inbound offers, the website shows a page with the details of all
the information mentioned before from both the outbound and the inbound legs (see
Fig. 4d), as well as the full breakdown of the price (taxes and fees clearly displayed).
After the customer clicks on “Continue Booking”, the customer fills in information
about the passengers and proceeds with the payment steps. Finally, after finalizing the
purchase, the customer is shown a confirmation page. The one-way purchase journey
is very similar, with the exception that instead of clicking through two sets of results
(outbound and inbound), the customer is displayed only one page of results, “One-way
results”.

3.2 Empirical model specification

In this subsection, we discuss how to adapt our model from Section 2 to the travel
platform application.

3.2.1 Search queries

We construct several variables from the query information that aim to capture the con-
text of a journey in our model. While some pieces of information are directly provided
by the customer (e.g., destination), others can be indirectly determined; e.g., whether
the trip includes weekends which can be extracted from the dates, or the trip distance
(inferred from the origin and destination airports). We combine these variables into a
vector of query variables, q;; in (2), that aim to capture information about the journey
in four different dimensions: (1) who is traveling, (2) which market this flight belongs
to (origin-destination), (3) when is the trip, (4) when was the search made. We model
each of these variables with different distributions depending on their type: Bernoulli
for binary variables, Categorical for categorical ones, and exponential and Gaussian for
continuous variables. Table 1 shows these variables and their corresponding summary
statistics.

We observe a great variety of trip characteristics in the data: 66% of journeys are
roundtrip (vs. one-ways); 28% include more than one adult and 8% include kids. The
average stay for roundtrips is 11.80 days, 37% of journeys are for flights during the
summer season and 3% for the holiday season, ' and 66% of flight searches include
stays over weekends. The average trip distance is 3,548 kilometers or 2,205 miles (e.g.,
approx. New York to Las Vegas); 59% of journeys are domestic (including US-Canada,
within-EU, or within-country flights) and 51% are US Only. Purchase journeys occur,
on average, 50.73 days prior to the departing date; 92% introduce a departing location
code for an airport (e.g., JFK), 8% a departing code of a city (e.g., NYC), and the rest
include a departing code that refers to both city and airport (e.g., MIA).

10 We define the summer season from June 30th to September 4th, and holiday season stays that include
either Thanksgiving, Christmas, or New Year’s holidays.
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Table 1 Summary statistics of query variables

Query variable Mean SD Quantiles
5% 50% 95%
Continuous
Trip distance (km.) 3,584.16 3,465.07 448 2,269 11,529
Time in advance to buy (days) 50.73 59.82 1 29 182
Length of stay (only RT) (days) 11.80 21.25 2 6 37
Binary
Is it roundtrip? 0.66 0 1 1
Traveling with kids? 0.08 0 0 1
More than one adult? 0.28 0 0 1
Is it domestic?? 0.59 0 1 1
Is it summer season? 0.37 0 0 1
Holiday season? 0.03 0 0 0
Does stay include a weekend? 0.66 0 1 1
Flying from international airport? 0.74 0 1 1
Searching on weekend? 0.21 0 0 1
Searching during work hours? 0.49 0 0 1
Categorical
Market
US Only 0.51 0 1 1
US Overseas 0.18 0 0 1
Within North AmericaP 0.15 0 0 1
Non-US within continent 0.10 0 0 1
Non-US across continent 0.06 0 0 1
Type of departure location
Airport 0.92 . 0 1 1
Multi-airport City 0.08 . 0 0 1

4 We define domestic as flights between the US and Canada, as well as flights within the European Union
(EU)
b This category includes Canada and Mexico and excludes US-only trips

3.2.2 Clicks and purchase

Once the query information is captured, we build a set of “click occasions” faced by
the customer. These click occasions are composed of a set of alternatives to click on
and the outcome of what was actually clicked on (or not). There are two types of click
occasions: (1) those on an outbound results page (where clicking on a product leads to
an inbound results page) and (2) those on an inbound results page (where clicking on a
product leads to flight detail page). We define Page; ;, as the set of products displayed
to customer i in journey j at step . We observe and allow in our model customers to
click on multiple flights from each results page by adding a click opportunity with the
same page results for each additional clicked product. By default, results within a page

@ Springer



398 N. Padilla et al.

are sorted increasingly in price. Once the customer sees the results, they can sort the
flights differently by clicking on sorting options, which include leg duration (hours)
and departure/arrival time. While these alternative sorting actions could be valuable
pieces of information for inferring preferences, unfortunately, we do not observe them
explicitly because the firm records these actions as if the customer starts the search
again, which is how we model them.

We specify the click component of our model in (3) as a discrete choice model, where
customers can choose between clicking on a product shown on the page k € Page; ;,,
continue searching to get a new set of products (k = s), or finish the search process
and move to the purchase decision (k = e), which could mean either purchasing a
considered product or deciding not to buy. We use a multinomial probit specification
with latent propensities ufj x> such that

Yij = argmax {”;‘Cjtk}’ with

kePage; ;, Ufs,e}

ﬂg? + Xicjtk/ - B;; +log-rank;; . - 0 + € if k € Page;;;,
= 8% e th=s 06
BY + sijie ifk=e,

where ¢;jik — €ijre ~ N (O, a?), xfjtk is the vector of attributes of product &, ﬁfj is
the vector of customer- and journey-specific product-attribute preferences, ,38" is the
intercept for clicking on a product, ,ij is the intercept for the decision to continue

searching, and ,38? is the intercept for finishing the search process, normalized to O for
identification purposes.

We control for ranking effects on search (Ursu, 2018) by incorporating the log of
the position of product k within the results page into the search in uf/ . and using n to

capture such ranking effects.!! Such a term also captures search costs within a page,
along with the intercepts in (3) that capture users’ propensity to keep searching and
are related to search costs across pages.

We create the consideration set, C;; in (5), by including all products that were
clicked before purchase (e.g., Bronnenberg et al., 2016)

Cij=1{k : ke Pagey,, v5, =k, re(l,.... T}

For roundtrip flights, only products where both the outbound and inbound legs of
the itinerary were clicked on are added to the consideration set. We then register the
outcome of the purchase occasion as a purchase for the product that was purchased
(a purchase confirmation page was presented), if any, or as a non-purchase in case no
product was purchased.

We specify the purchase model in (5) as a discrete choice between purchasing a
previously considered product and not purchasing. Specifically, we use a multinomial

n Following Ursu (2018), we include the log-position rank in the click decision but not in the purchase-
given-clicks decision.
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probit specification with latent propensities u 5 &> such that

yl.’; — arg max {”Z k} , where
keC;;U{NoPurchase}
0 .
o IBijp +Xijk/ . ﬂ;‘] + €ijk ifk € Cij (17)
ijk ,380 + €ijo if k = NoPurchase,

with €5 — €;jo ~ N(O, a[%), and where Xx; i is the vector of attributes of product k,
j‘j is the same vector of customer- and journey-specific product-attribute preferences

as in (16), ﬂ?/.p is the intercept for purchasing a product, and :3?/0 is the intercept for
not buying, normalized to O for identification purposes.

Note that the vector of customer- and journey-specific preferences g;; introduced
in our general model in (1) contains the product attribute preferences as well as the
intercepts for the click and purchase models,

0c  p0s 20 !
Bij = (’Sif* B Bif ;;_/) '
3.2.3 Product attributes

Customers observe multiple product attributes when making a click and purchase
decision. For a roundtrip journey, all attributes, except price, are specific to each leg
of the trip. That is, there is a set of attributes that describe the outbound leg of the trip,
and there is the same set of attributes that describe the inbound (returning) leg of the
trip. Our model allows users to look for different attributes in a flight, depending on
the leg.!?

A subset of these attributes is summarized in Table 2 (see Web Appendix F for full
set of summary statistics). Prices are measured at the whole trip level. The average
offer displayed is priced at $1,547 but offers vary significantly in their price, with a
standard deviation of $3,249. Furthermore, journeys have different price levels that
depend on origin-destination and the dates. This variation in price becomes clearer
when looking at the price of the cheapest offer per journey. The cheapest price dis-
played per journey has an average of $698 across all customer journeys, with a standard
deviation of $1,526. This indicates that raw prices may not be a good proxy to cap-
ture price sensitivity as prices are only compared within a journey. For example, a
New York - Chicago roundtrip ticket for $600 may be considered expensive, whereas
a roundtrip flight from New York to Buenos Aires for $800 may be considered a good
deal. Therefore, we transform prices by computing the log difference between the
focal flight and the lowest price per journey.'® Log transformation accounts for the
long-tail dispersion in price differences.

12 For roundtrips, we assume the same preferences for outbound and inbound attributes, except for prefer-
ences for departure and arrival times.

13 We believe this transformation is appropriate due to the salience of price comparisons in this context.
We tested both specifications (raw prices and relative prices) and found that the ‘relative log price’ provided
slightly better predictive performance.
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Table 2 Summary statistics of a subset of product attributes in page results

Product attribute Mean SD Quantiles
5% 50% 95%

Product level attributes

Price 1,547 3,269 196 751 5,320
Cheapest price per journey 698 1,526 98 401 2,117
Outbound level attributes
Length of trip (hours) 11.28 8.49 2.05 8.42 28.60
Shortest length of trip per journey (hours) 5.86 5.05 1.25 4.07 17.08
Number of stops: Non stop 0.20 . 0 0 1
Alliance: OneWorld (American) 0.27 0 0 1
Alliance: Skyteam (Delta) 0.27 0 0 1
Alliance: Star Alliance (United) 0.23 0 0 1
Dep. time: Early morning (0:00am - 4:59am) 0.04 0 0 0
Inbound level attributes
Length of trip (hours) 11.08 9.02 1.83 7.92 29.50
Shortest length of trip per journey (hours) 6.17 5.31 1.25 4.27 17.75
Number of stops: Non stop 0.19 . 0 0 1
Alliance: OneWorld (American) 0.51 0 1 1
Alliance: Skyteam (Delta) 0.13 0 0 1
Alliance: Star Alliance (United) 0.15 0 0 1
Dep. time: Early morning (0:00am - 4:59am) 0.03 0 0 0

Offers also differ in terms of how long each leg of the trip is. The average outbound
leg of a displayed trip takes 11.28 hours, with a large variation within and across
journeys. The shortest flight per journey takes, on average, 5.86 hours for the outbound
leg. Most displayed flights are one-stop flights (59%-70% for inbound or outbound
legs), whereas nonstop flights account for 19%-20% of offers. As most of the variation
in length is driven by the number of stops a leg has, we subtract from the length of
a leg the length of the shortest itinerary with the same number of stops to isolate the
effect of longer connections from more connections.

Airline data is sparse, so we aggregate airlines into alliances. Alliances are groups
of airlines that share benefits and usually operate code-shared flights. For example,
a JFK to Madrid flight operated by Iberia might also be sold by American Airlines,
British Airways, and Finnair, all belonging to the same alliance. The three biggest
alliances are Oneworld, SkyTeam, and Star Alliance, accounting for 77%-79% of all
offers. Individual airlines not in an alliance but representing a significant proportion of
offers are categorized as their own airline, while smaller airlines not in an alliance are
grouped under “Other-No alliance”. Finally, we label as “Multiple alliances” offers
that have connecting flights of different alliances in the same leg of the trip.
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3.2.4 Filters

Customers can filter the product results on a page by clicking on one (or multiple)
product attribute levels: airline, number of stops, and departure and arrival times. In
the data, we do not directly observe the use of filters. Instead, we infer the application
of filters from the data by contrasting the product results shown to the customer at each
step of the journey with the set of products available at the beginning of the journey.
Number of stops is the attribute with the largest number of filter occasions in our data,
with 13.8% of journeys having the customer filtering for non-stop flights at some point
during the course of the journey. For all other attributes and levels, filters are applied
very infrequently (less than 4% of journeys), supporting the model simplification of
modeling filter outcomes once for the entire course of a journey as opposed to at the
page-level. Web Appendix F.2 discusses the construction process of the filters and
summary statistics of the filtering actions.

We specify each model component p(fij¢ | B;;) in (4) using a binary probit spec-
ification such that

fije ~ Bemnoulli ( (af + wiye' -t + B3 - ol ). )

where oz? is the intercept of filtering on level ¢, ﬁ;‘j is the same set of preferences that

drive clicks and purchases, and af is the vector that relates those preferences to the
filtering decision. It is this term that allows the model to learn preferences for attributes
by fusing filtering decisions about those attributes. To control for other factors that
may affect the filtering decisions (e.g., the overall characteristics of unfiltered results),
we include a set of controls w;;¢ that summarize the set of (unfiltered) results (the
number of total products, the percentage of products with level ¢, and the number of
top 5 products with level ¢ in the unfiltered results).

3.3 Summary statistics

Table 3 shows the the total number of customers, journeys, purchases, click steps and
clicked products. We observe a total of 25,402 journeys, for which we aim to estimate
individual-level preferences. The data indeed exhibit thin past purchase history at the
individual level—while, on average, each customer undertakes 5.645 journeys, the
average number of purchases per customer is only 0.83. With low historical purchase
rates at the customer level, the use of traditional models that rely on long individual
purchase histories, such as scanner panel data, is limited. In many settings such as ours,
the 1PD on purchases is thin. However, because customers often use the platform for
search — even when a purchase eventually does not occur — these searches can
still provide valuable information. The amount of data collected during the journey
is rich—on average, customers in our sample clicked on 1.14 products per journey,
having a total of 6.45 clicks in total.

On average, 14.6% of journeys end with a purchase. This number may seem high
when compared to standard metrics of conversion for an online retailer, but note
there are two possible reasons for this relatively high conversion rate. First, our data
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correspond to a sample of customers defined as “active” by the focal firm, and therefore
this figure would be lower for the average website visitor. Second, in this paper, we
adopt a broader definition of a journey, the first-party customer journey, which not
only includes multiple sessions for the same customer but also combines searches that
include nearby airports on similar dates, as the customer is trying to satisfy the same
need. In contrast, traditional conversion rates tend to treat different search queries,
with different variations of airports or dates, as different and independent purchase
funnels.

3.4 Identification and estimation

We now summarize the main data patterns that enable the identification of our model’s
parameters. First, variations in attributes across alternatives, along with variations
in clickthrough and purchase rates, allow for the identification of preferences over
product attributes. Second, because results are deterministically sorted by price, and
the order is observed, we can disentangle the price coefficient from ranking effects
due to the variation of prices across options in the same position and products with
the same price in different positions. Third, the different sources of heterogeneity
are identified through systematic patterns of preferences. Customer heterogeneity is
identified by variations across journeys belonging to the same customer. Similarly,
context heterogeneity is identified through systematic multivariate similarities across
both query and preference parameters. Finally, the number of contexts is identified
through a combination of the degree of similarity between journeys and the sparsity
enforced by the Pitman-Yor process priors.

We split the data into training and validation at the customer and journey level: for
each customer, we use some of their journeys for training and leave the last journey (or
last few journeys) as a hold-out, such that we can explore the model performance in
new journeys for existing customers. We leverage the data split in different ways. The
training data is used to estimate the model and to summarize overall preferences and
contexts in this market (Sections 4.1 and 4.2). We use held-out journeys to illustrate
model inferences at different stages of the journey (Section 4.3), to evaluate the model’s
overall predictive ability (Section 4.4), and finally, to quantify the value of leveraging
first-party journeys under different assumptions regarding the traceability of customer
data (Section 5).

We estimate the model parameters in a fully Bayesian framework using MCMC.
Specifically, we use a blocked Gibbs sampler implemented in Julia to draw from
the context posterior distribution with Pitman-Yor process priors following its stick-
breaking representation (Ishwaran & James, 2001). This approach allows us to
implement a fast sampler that is able to draw the context assignment, z;;, in parallel
across journeys, given context locations and context size parameters, as opposed to
using marginal samplers that marginalize the context distribution F but sample sequen-
tially for each journey conditioning on context assignments for all other journeys (Neal,
2000). We use adaptive Metropolis-within-Gibbs steps to draw the Pitman-Yor param-
eters @ and d, and we use Gibbs steps to draw the rest of the parameters using their full
conditionals. For full details of the estimation procedure see Web Appendix C. We
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estimate our model for 100,000 warm-up iterations and we use a sample of 1,000 draws
from the posterior distribution (5,000 iterations saving a draw every 5 iterations). We
assess convergence by monitoring traceplots over the model parameters.

4 Results
4.1 Average preferences for flight attributes

We start by describing the mean level preferences (B;;). As these preferences vary
across journeys, we compute the population mean estimates averaging B;; across all
in-sample journeys (Fig. 5). As expected, customers prefer lower prices and flights of
shorter lengths, they significantly prefer non-stops over one-stop, and tend to prefer
the OneWorld alliance over all other alternatives.'* They favor departure times either
in the morning or in the afternoon for the outbound leg, while they prefer to depart in
the afternoon or in the evening for the return leg.

4.2 Contexts uncovered from the data

While the mean parameters are informative to explore the overall preferences for
airline tickets, customers book flights to satisfy a wide variety of needs (i.e., a family
vacation is not the same as a 2-day conference trip), for which preferences might also
vary. We explore those differences by examining the rich set of contexts uncovered by
our model. As explained in Section 2 and illustrated in Fig. 1, we recover the number
of contexts non-parametrically. Figure 6 shows the posterior distribution of the Pitman
Yor parameters as well as the number of contexts (i.e., those with at least one journey
assigned to them across the posterior distribution). While Fig. 6 shows a maximum of
39 contexts in the data, when looking at the relative size of each context (Fig. 7), we
find that only 22 of these contexts appear in a journey with a probability higher than
1% (dotted line). We focus on those 22 contexts next.

The model parameters allow us to explore the type of trip (or “need”) that each
contextrepresents. To interpret the model parameters we need to normalize the location
parameters, 6., to compare both the query parameters and the flight preferences across
the 22 contexts (see posterior statistics for all parameters of the 22 contexts in Web
Appendix G.1). We normalize the location parameters to compare contexts with respect
to whether they score higher or lower than average on each of the query parameters
and preferences. Figure 8 shows these relative scores for a subset of variables. !

Finally, using airport information, we identify the top 50 most frequent routes per
context (see Fig. 9 for a sample of contexts and Fig. G.3 in the Web Appendix for all
contexts). Note that the exact destination is not included in the model and therefore not

14 For categorical attributes, the base levels are: one-stop, OneWorld, and morning times.

15 For simplicity, we present the results for a subset of query parameters and product-attribute preferences.
Details on the normalizing procedure and the full set of results are shown in Web Appendix G.2.
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Fig.5 Population level estimates: Posterior Mean and 95% Credible Posterior Interval (CPI)

used to draw contexts from the data. However, we summarize this information for two
main reasons. First, to explore the external validity of the contexts uncovered by the
model. We find that destinations are largely congruent with the queries and preferences
of each context (e.g., Hawaii is a common destination for week-long family trips with
a strong preference for non-stop flights). Second, flight destinations might be useful
to further characterize the contexts uncovered by the model.

For example, combining the insights from the model parameters and top destina-
tions, we label Context 1 as “One-way solo domestic trips (mostly US),” as these
journeys tend to be one-way and domestic, primarily involving no other adults or
children. Searches for these journeys typically begin approximately 24 days before
departure. Compared to the general population, customers in these journeys are slightly
more price-sensitive, have a stronger dislike for longer flights and routes with two or
more stops, and show weaker preferences for routes with Spirit, Frontier, and multiple
alliance flights. Similarly, we label Context 5 as “Family vacations in the Caribbean,”
since a prototypical journey in this context is a roundtrip route between the US and
other North American or Caribbean countries. These journeys often involve additional
adults and children, with an average stay of 9.8 days and searches beginning around 82
days before departure. There is a pronounced preference for Star Alliance, non-stop
flights, and shorter routes.

4.3 Learning along the journey

Another desirable characteristic of the model is that it enables the focal firm to update
customer insights as users advance in their journey. To illustrate this process, we select
a customer with two journeys in the holdout data and examine the model inferences at
different stages of each journey. Figure 10 shows the model posterior distribution of
contexts (top row) and price sensitivity (bottom row) for each journey, given the data
available at four different stages: (1) at the homepage, (2) after the query was inserted,
(3) after two click steps, and (4) after five click steps.
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Fig.6 Posterior density of Pitman Yor parameters and resulting number of contexts

At the homepage, the model does not have any information about the focal journey.
Hence, the inference for context corresponds to the average propensities across the
population. The small differences between the first and second journeys are simply
due to sampling error. Then, the model incorporates the query information and updates
its inference about the context (first row, second column). For Journey 1 (“One adult
roundtrip from Kyiv, Ukraine to New York, USA”), the probability for contexts 7
and 10 notably increases, whereas for Journey 2 (“One adult oneway, Kyiv, Ukraine
to Lisbon, Portugal”) contexts 9, 13, and 20 become more likely to occur. After 2
clicks (steps), the likelihood that Journey I belongs to context 10 increases further,
whereas the probabilities for Journey 2 remain largely unchanged. Finally, after 5
clicks (steps), the model has more information about what the customer is clicking on.
Notably, Journey 1 is clearly identified as belonging to context 10 (which we describe
as the 2-week long-haul summer trip), whereas the inference for Journey 2 changes
drastically, with context 1 having the highest probability.

Posterior mean of n, (95% CPI)

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 2 27 28 29 30 31 32 33 34 35 36 37 38 39
Contexts

Fig.7 Posterior mean (and 95% CPI) of context probabilities (7r.)
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Similarly, we examine how the model infers price sensitivity as the customer moves
across the journey (vertical histograms in the second rows of Fig. 10a and b). At
homepage, both distributions are similar as both journeys belong to the same customer.
After the query, both distributions tighten, with a lower price coefficient for Journey

(a) Context 1 (b) Context 3 (b) Context 5

<

(d) Context 9 (e) Context 10 (f) Context 13

Fig.9 Top 50 routes per context
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Fig. 10 Posterior context (p(z;;|Data;j;)) and posterior price sensitivity (p(B;; price|Data;j;)) for two

journeys of the same (sampled) customer at different stages of the journey, ¢: (1) homepage, (2) after query,

(3) after 2 click steps, (4) after 5 click steps

2 than Journey 1. Interestingly, while both journeys belong to the same user, their
inferred price sensitivity differs between journeys, especially after observing some
clicks. In particular, after 5 clicks (steps), the model identifies that the customer is
more price-sensitive for the flight to Lisbon than for the flight to New York. This
is consistent with the fact that, across the population, journeys in context 1 exhibit
stronger price sensitivity.

This illustrative example underscores the ability of the model to seamlessly inte-
grate information from diverse customer interactions. By doing so, it extracts contexts
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representing different customers’ needs and generates insights into customers’ prefer-
ences, empowering firms to continuously refine their understanding of what customers
seek as they move along the journey.

4.4 Model predictive validity

While the model’s primary objectives extend beyond predictions, confirming the
model’s precision in forecasting customer behavior serves as an indicator of its ability
to harness and meaningfully leverage the data collected throughout the first-party jour-
ney. Specifically, we evaluate the models’ ability to predict transactions and product
choices at different points along the journey (e.g., immediately after a customer inserts
the query, after two clicks, etc.). We compare these predictions with the predictions of
conventional ML methods trained to predict those exact outcomes based on a large set
of features that capture the customer information available at each point in the journey.
We compare our model to the Random Forest (RF) and XGBoost models (see Web
Appendix H for details of the prediction exercise).

As can be seen in Table 4, we find that our model performance is on par, and
overall more robust across prediction tasks, relative to the ML models. Our modeling
approach predicts reasonably well right after a query when no click information is
available on the current journey, performing as well as the best alternative, which only
does well either after query or after 5 steps. This result suggests our model can better
encode information from past journeys and combine them with current journeys when
data becomes available relative to traditional ML approaches (Smith et al., 2023). This
relative performance is impressive because the ML models were specifically trained
to predict each of the tasks (e.g., predict the focal outcome after a query or predict
the focal outcome after 5 clicks/steps), whereas the proposed model was trained to
piece together sources of information to customer needs and the context of the focal
customer journey.

5 The value of first-party data

We first quantify the value of 1PD by comparing the predictive accuracy of the model
insights at different stages of the customer journey and under different data reten-

Table 4 Predicting purchase incidence and product choice using the proposed and traditional machine
learning models

Incidence Product choice given purchase

Balanced accuracy Balanced accuracy Hit rate
Model After query After 5 clicks After query After 5 clicks After query After 5 clicks
Proposed model 0.62 0.65 0.58 0.81 0.16 0.62
Random forest  0.60 0.70 0.58 0.59 0.16 0.19
XGBoost 0.50 0.59 0.51 0.81 0.03 0.62
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tion scenarios. Then, we illustrate two applications of how firms could leverage the
model predictions from 1PD collected throughout the customer journey to make better
marketing decisions.

5.1 The predictive value of first-party data

We quantify the value of 1PD at three levels: (1) the value of using the current journey
data, (2) the value of using past click-stream data in addition to purchase history data,
and (3) the value of tracking customers across visits. Before presenting our findings, we
detail our approach, which uses both our full model and nested versions with subsets
of 1PD to predict customer choices. To simulate unforeseen journeys, we use a set of
held-out journeys, treating the characteristics of the chosen flight as the “ground truth”
of what the customer was looking for. Predictions are made at three key “moments”:
when a query is inserted, after two clicks (steps), and after five clicks (steps).

Consistent with the analysis presented in Section 4.4, we compute the probability
that the customer would select the (chosen) product based on the model’s parameters
at each point in time. We also explore the model’s ability to predict the main attributes
of the chosen flight (namely alliance, number of stops, price, and outbound length),
which might represent a more realistic goal for the platform. We use hit rates for
product choice, alliance and the number of stops (as they are categorical variables);
and root mean squared error (RMSE) for price and length, which are continuous. Web
Appendix I provides further details about predictions’ calculations.

The value of data from the current journey We measure the value of the data collected
along the current journey by comparing the performances of the Full model across
different stages in the customer journey (the columns in Table 5). This analysis aims
to highlight the benefits of incorporating customer information “live” as the customer
progresses through the journey. We can see that the model significantly improves
its accuracy of inferring what the customer is looking for as more data becomes
available along the current journey. While this finding should not be surprising— as
customers click, they often get closer to purchase—it is reassuring that the model is
able to integrate such information in an effective manner. This result also highlights
the premise of the paper of leveraging the customer journey as a source of information.
Across all prediction tasks, the model’s ability to predict what customers are looking
for increases notably after observing a few clicks (e.g., the hit rate for the product
chosen increases by 70% just after two clicks, and by nearly 300% after five clicks)
relative to the query step. Exploring the main product attributes in this setting, we find
that the (incremental) value of current journey clicks seems particularly strong when
inferring what alliance the customer may choose, with hit rates increasing from 0.44
at query and 0.76 after five clicks.

The value of click-stream data To quantify the incremental value of prior-to-purchase

data, we compare the Full model with a traditional hierarchical model of purchase,
labeled Only purchase, which relies solely on purchase data and accounts for
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Table5 Model’s accuracy at
predicting the exact product
chosen as well as the main
attributes of the (chosen)
product, evaluated at different

After...
Query 2 clicks 5 clicks

Product choice it rate, 1 better)

stages of the journey Full model 0.16 0.27 0.62
% dif. vs. query (+69.88%) (+289.16%)
Only purchase 0.07 0.07 0.07
No customer tracking 0.10 0.29 0.62

Alliance (hit rate, 1 better)

Full model 0.44 0.55 0.76
% dif. vs. query (+25.33%) (+73.36%)
Only purchase 0.39 0.39 0.39
No customer tracking 0.32 0.46 0.71

Number of Stops it rate, 1 better)

Full model 0.59 0.62 0.78
% dif. vs. query (+5.84%) (+32.14%)
Only purchase 0.43 0.43 0.43
No customer tracking 0.39 0.50 0.72
Price RMSE. | better)
Full model 0.96 0.92 0.81
% dif. vs. query (-4.13%) (-15.30%)
Only purchase 1.16 1.16 1.16
No customer tracking 1.15 1.07 0.91

Length RMSE, | better)

Full model 0.88 0.84 0.73
% dif. vs. query (-4.16%) (-16.52%)
Only purchase 1.11 1.11 1.11
No customer tracking 1.20 1.10 0.93

Prediction measures: Hit rate (product, alliance, and number of stops)
and RMSE (price and length). Performance of Full vs. Only
purchase vs. No customer tracking models

customer heterogeneity (B;; = p;). This benchmark ignores past click information
and fails to update during the current journey, similar to models commonly used
for scanner panel data (e.g., Allenby & Rossi, 1998). Pre-purchase data is crucial
because traditional models are limited when transactions are infrequent. In contrast,
first-party data (1PD) collected throughout the customer journey-both current and past-
offers a richer understanding of customer behavior, helping firms optimize marketing
strategies to better meet customer needs. This highlights the importance of integrating
the multiple behaviors observed along the journey, which are easy to collect but often
not stored by companies.

The results in Table 5 suggest that there is significant value in the information
collected prior to purchase throughout all stages of the customer journey. Specifically,

@ Springer



412 N. Padilla et al.

the hit rate for the product chosen after query is more than twice as large for the Full
model (0.16) than for the Only purchase model (0.07). Additionally, the Only
purchase model consistently predicts 15%-20% worse than the Full model for
flight attributes after query. These findings indicate that queries and clicks from prior
Jjourneys allow the model to make better predictions even before leveraging the click
information from the current journey. Looking across columns, we observe that the
benefit of utilizing prior-to-purchase data is even more pronounced when incorporating
query and clicks from the current journey. For example, the hit rate for the product
chosen after five clicks is nine-fold higher than the model that leverages only purchase
data.

The value of tracking customers Finally, to measure the value of tracking users,
we contrast the performance of the Full model against a nested version labeled
No customer tracking, where the customer identity is unknown. This (nested)
model considers every journey as if it belongs to a “new” customer (for whom we don’t
know individual preferences) as journeys cannot be attributed to a specific customer, '
and can either represent a situation of customers using the platform without logging
in (and no cookie tracking) or a privacy scenario where the firm is not allowed to
store customer historical data. This comparison helps us quantify the losses incurred
when/if the company loses its ability to identify customers. Importantly, we compare
both models at different moments of the journey, enabling us to measure the trade-off
between the information lost due to the inability to track users and the information
gained from the ability to collect and integrate data along the current journey.

Not surprisingly, not being able to track users hinders the model’s ability to infer
what they might be looking for (i.e., No customer tracking underperforms
Full in most cases). The model particularly benefits from identifying a customer
when making inferences early in the journey. Across all attributes, the full model
performs substantially better than a model with no tracking information at query (e.g.,
a38% increase on predicting Alliance). The disparity diminishes significantly as more
clicks are observed in the current journey. After five clicks, even when the firm is unable
to identify consumers, the model performs comparably to the model with complete
information (62% hit rate in product choice). These results underscore the importance
of incorporating customer interactions throughout the entire journey, particularly in
cold-start scenarios where the company lacks prior information about the customer.

For individual product attributes, we find that leveraging past journeys enhances
the model’s ability to discern the type of product the customer seeks (e.g., for Alliance
76% hit rate for the Full model vs. 71% forthe No customer tracking model;
and for stops 78% hit rate for the Full model vs. 72% for the No customer
tracking model). As we demonstrate next, individual attributes can be useful in
a retargeting effort. For example, featuring specific brands (e.g., United flights from
$199), product attributes (e.g., non-stop flights from $199), or a combination of these
(e.g., United non-stop flights from $199).

16 For this model, we keep the specification of the model, B;; = p; + p ;, where the stable preferences
term p;, in this case, captures journey-specific idiosyncratic preferences not explained by context. This
allows the model to still learn, beyond context, from each click in the current journey.
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Table 6 Product placement: The focal company uses the insights from the model to identify the (expected)
preferred product and places it on top of the ranking

Model P(abandon) CTR (Ist page) CTR (Recommended)
Baseline: Cheapest / Observed Ranking 0.228 0.224 0.091
Our Recommended Product on Top 0.198 0.291 0.198

Taken together, these results underscore the value of collecting and integrating real-
time 1PD, and combining those data sources across journeys, even when customers
cannot be tracked. We find that the model’s ability to leverage information along
the current journey (combined with past journeys from “anonymous” customers) can
compensate for the loss in firm’s ability to identify the individual customer.

5.2 Leveraging model predictions for managerial decisions

This section outlines the practical significance of our modeling framework by exam-
ining its application to two prevalent marketing decisions in contexts where firms
can collect 1PD throughout the customer journey: (1) product placement (or recom-
mendation), and (2) retargeting. Although direct empirical validation of the model is
beyond our scope, we utilize holdout data to simulate potential marketing outcomes,
comparing the use of first-party customer journey data against baseline methods.

5.2.1 Product placement / recommendation

We explore a scenario where, right after the customer inserts the query, the platform
wishes to place at the top of the ranking the product the platform believes the customer
would prefer the most based on its current understanding of user preferences at that
stage of the journey. This is similar to the “recommended” or “best” product commonly
presented at the top of the ranking in travel platforms.!” Using holdout journey data,
we compare the standard practice (baseline) of presenting products in the observed
sequence, typically arranged by price, with an alternative scenario. In this alternative,
the firm highlights at the top of the ranking the product most likely to match consumer
preferences based on our model, followed by the original ranking from the data (the
average position of the recommended product in the original ranking is 15.9).

We simulate customer responses using our proposed model'® and report (1) the
likelihood of the customer abandoning the journey after seeing the product results, (2)
the chance of clicking on any product from the initial page, and (3) the probability
of the customer clicking the top product in the ranking (lowest priced product in the
observed data and the recommended product in our counterfactual).

17 The platform we worked with did not have such a placement during our data period.

18 Qur reliance on model-generated evaluation is necessary because we do not observe the counterfactual
scenarios in the holdout data (Smith et al., 2023). We generate such evaluations using the full model with
all click and purchase information, which has different estimates from those used only using search query.
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The scenario corresponding to the baseline condition, where products were sorted
by price, results in a customer journey abandonment probability of 22.8%, a click-
through rate (CTR) of 22.4% on any product on the first page, and a mere 9.1% CTR
for the top, often lowest price, product. In contrast, leveraging insights from our model
substantially and significantly reduces the abandonment rate to 19.8%, increases the
first-page CTR to 29.1%, and boosts the recommended product CTR to 19.8%. (see
Table 6).

5.2.2 Retargeting

Retargeting is another prevalent marketing practice aimed at encouraging purchases
among customers who have shown interest in a purchase but have not completed the
journey. For instance, a company might send an email or show a display ad featuring
a flight that aligns with the customer’s previous searches. This is a common practice
in the industry (Bloomreach, 2022; Google, 2023). In this application, we posit that
the company can capitalize on the information gleaned from the customer journey
to determine the creative for the retargeted advertisement. We propose to present
in the retargeting creative the product deemed most likely to be purchased by the
customer, as predicted by our model. We contrast this approach with two alternative
heuristics: (1) the most popular product, that is, the product with the highest non-
personalized predicted purchase probability in our dataset, and (2) the last product the
customer clicked on.'” Specifically, we simulate outcomes for a single ad impression of
aretargeted ad for each customer where we vary the product featured in the impression,
measuring the click-through-rates on these ads.?” To simulate the behavior, we use the
full model with all click and purchase information (which is different from the model
used to set the ’best product® policy), where we assume the utility of clicking on a
retargeted ad is proportional to the utility estimated in the model.?!

The results, depicted in Table 7, illustrate the click-through rates (CTRs) for retar-
geted ads based on the proposed model and the two baseline alternatives. The first
baseline model based on the most popular product has a CTR of 5.4%, whereas the
baseline model, which retargets based on the last clicked item, achieves a CTR of
5.6%. In contrast, retargeting the best product based on our model leads to a superior
CTR of 7.4%. This represents a CTR improvement of 28%-32% relative to retargeting
using the two baseline cases.

Collectively, these findings emphasize the practical benefit of the proposed model
for businesses looking to increase customer engagement and sales conversions. By
leveraging the insights from the proposed model, companies can not only improve

19 When no product has been clicked on, we feature the most popular product in our dataset for that query.

20 Our analysis includes customer journeys with a minimum of two clicks, applying the inferences of the
model at that specific juncture to find the best product.

21 Since the variance of the error term for the retargeting action is not known, we set it to o = 1.25 and
vary it in the Web Appendix J. We find that the improvements in CTRs to be robust to alternative standard
deviations. The intercept is set so that the mean CTR for a retargeted ad featuring a random product equals
2% across journeys (the average retargeting CTR without content personalization reported in the industry is
0.7% Signifi Media 2020, and highly personalized ads have 3x higher CTRs compared to non-personalized
ads Bleier and Eisenbeiss 2015). For details, see Web Appendix J.
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Table 7 Retargeting: Predicted

Model Click-th h rat
CTR when the firm utilizes o [CTTong rates
insights from the m9del to Baseline 1 (Most popular) 0.054
formulate a retargeting offer . .
Baseline 2 (Last clicked) 0.056
% dif. vs. most popular (+3.05%)
Highest preference based on our model 0.074
% dif. vs. most popular (+31.94%)
% dif. vs. last clicked (+28.04%)

The baseline models presume that the retargeting offer features the
product that was most recently clicked or the most popular product

product recommendations by effectively positioning products in a way that better
aligns with the customer’s preferences but can also enhance engagement by tailoring
retargeted advertisements. This analysis demonstrates the potential of using our model
to create more personalized and impactful customer interactions. This can lead to a
more efficient allocation of marketing resources and potentially higher returns on
investment, making the proposed model a valuable tool for data-driven marketing
efforts.

6 Conclusion

We propose a probabilistic non-parametric Bayesian machine learning model that
integrates information collected along the first-party journey and combines such infor-
mation across customers and journeys. This model uses within-journey data to identify
distinct journey-specific preferences. Information from past journeys, including pur-
chases, searches, and clicks, helps infer stable customer preferences. Behavior across
customers enriches information by integrating data from customers with analogous
context-specific preferences. This approach not only helps firms to infer what cus-
tomers are looking for, even in settings where purchases occur infrequently, but also
addresses the so-called “cold start problem,” offering a solution to compensate for
the lack of historical data with real-time data collected along the first-party customer
journey.

Applying the model to data from an online travel platform showcases its ability to
extract key aspects of customer preferences, such as airline choices, flight stop pref-
erences, and price considerations. The model demonstrates significant adaptability,
by continuously updating inferences as customers progress throughout their journeys.
This is a notable improvement over traditional panel-data models that rely solely
on purchase data. Our model predicts consumers’ product selection nine times bet-
ter than models that only use purchase or sales data, highlighting the importance of
pre-purchase data. Furthermore, our modeling framework assesses the implications of
data loss under heightened data privacy scenarios, illustrating how leveraging infor-
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mation across first-party customer journeys can compensate for reduced customer
identification capabilities. This is increasingly relevant as platforms allow searches
without requiring login credentials or are mandated to limit the storage of customers’
data.

Our research has several limitations that offer promising directions for future explo-
ration. First, the complexity of our model may challenge computational efficiency
and scalability, especially with large datasets. Faster approximation strategies for
the posterior distribution of customer preferences, such as point estimates or varia-
tional approximations, may be necessary for real-time applications. Modern inference
methods, like amortized variational inference (Kingma & Welling, 2013; Agrawal &
Domke, 2021), could also be used to efficiently update journey-specific preferences.
Second, while we emphasize the benefits of incorporating first-party data (1PD), our
model does not account for external factors that influence customer behavior, such as
economic trends or unexpected events. This could limit the model’s ability to leverage
past journeys to augment limited early data in the customer journey. Future research
should explore incorporating broader dynamics or shocks to allow the model to adapt
to significant shifts in preferences.

Third, our model is not based on a rational economic framework, which prevents it
from deriving structural invariant parameters useful for counterfactual applications that
could alter market equilibrium. Future work should aim to integrate the flexibility of our
approach with structural search models. Fourth, due to infrequent purchase behavior
in our data, we assume a common context distribution across customers. In settings
with more frequent journeys, sufficient histories could allow for customer-specific
contexts. Alternative empirical settings where journeys are observed across multiple
product categories may permit combining information across journeys, customers,
and product categories.

Finally, we measure the value of within-journey and past-journey data for an online
travel platform, but this value may vary by application. For example, within-journey
data may be more valuable for durable goods than for past journeys from years ago.
Investigating the varying value of customer journey data across different contexts
could be a fruitful area for future research. We hope our work inspires further stud-
ies on leveraging first-party customer journeys and their implications for marketing
strategies.

In conclusion, we aim to highlight the opportunity to fuse historical purchase and
click-stream data with current first-party journey data in customer relationship man-
agement and choice modeling research. This perspective is particularly relevant given
the evolving challenges posed by data privacy concerns and the dynamic and non-linear
nature of customer journeys.

Supplementary Information  The online version contains supplementary material available at https://doi.
org/10.1007/s11129-024-09287-y.
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